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Modeling, AI, and Machine Learning Applied to Interfaces 
Moderators: J. Trey Diulus, NIST, Kateryna Artyushkova, Physical 
Electronics 

8:20am CA1+AS+LS+NS+SS+VT-MoM-1 Topological and Geometric 
Descriptors of Complex Self-assembly at Liquid Interfaces, Aurora Clark, 
University of Utah INVITED 

Amphiphilic surfactants at liquid/liquid interfaces can form complex self-
assembled architectures that underpin interfacial reactivity and transport. 
This has been demonstrated by surface sensitive spectroscopies and 
molecular dynamics simulations within the domain of liquid/liquid 
extraction, which involves solute adsorption, complexation reactions and 
transport across the phase boundary. Being able to quantify surfactant 
organization is a significant challenge because the distribution of species is 
broad and highly heterogeneous. As such, in the analysis of molecular 
dynamics data, there is significant need to develop descriptors that allow 
statistical analysis of surface organization. This work presents recent 
developments based upon geometric measure theory and topological data 
analysis that are able to identify surface assemblies and their dynamic 
evolution. These methods are revealing intricate dependencies of surface 
assembly upon solution composition and the impact this has upon 
transport mechanisms. 
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9:00am CA1+AS+LS+NS+SS+VT-MoM-3 Machine Learning and the Future 
of Surface Analysis, J. Jones, M. Caouette, Kateryna Artyushkova, Physical 
Electronics INVITED 

Machine learning can potentially revolutionize all areas of material science 
and engineering, including surface analysis, by automating and accelerating 
data acquisition and analysis. The application of machine learning and 
artificial intelligence (ML/AI) has been actively evaluated and used in 
scanning probe microscopic methods1-2, while the application of AI in 
surface analysis methods such as AES, XPS, and TOF-SIMS is in the very 
early stages.3 In this talk, I will discuss the potential areas where AI will 
change how we do surface analysis. 

With recent instrumental development yielding improvements in sensitivity 
and throughput, the data acquisition stage of surface analysis has become 
much faster than the experimental planning or data analysis stages, which 
bothrequire significant operator time and human-based decisions. Using a 
spectrometer still requires a human operator with instrument-specific 
knowledge and experience in how to operate it. More importantly, the 
operator uses physical and chemical knowledge to decide on what specific 
data must be obtained and from which locations on the sample, depending 
on the analytical question being addressed by the experiment. Experienced 
scientists make these decisions effortlessly during the experiment, but it is 
a very challenging task for ML algorithms that rely on training data with 
explicit descriptors. 

Initial AI applications to analytical surface analysis will focus on instrument 
optimization and performance inherent in the analytical workflow. Unlike 
acquisition parameters based on chemical or material science requiring 

broader context, tuning, and standardizing the spectrometer can be easily 
cast into numerical terms processable by AI. 

Machine learning can also be utilized as a live data integrity monitoring 
service during acquisition, recognizing and rejecting "bad data". 
Systemically erroneous data caused by charging or sample damage are 
often not discovered until the experiment is complete and the data 
analyzed by a human. Catching it automatically during the experiment 
saves valuable operator and instrument time. Here, I will present an initial 
application wherein ML was used to identify whether ToF-SIMS spectra 
were correctly calibrated. 

1.S.V.Kalinin, ACS Nano2021, 15, 8, 12604–12627. 

2. S.V.Kalinin, arXiv:2304.02048 

3. G Drera et al 2020 Mach. Learn.: Sci. Technol.1 015008 

9:40am CA1+AS+LS+NS+SS+VT-MoM-5 Complexity to Clarity: Detecting, 
Identifying and Analyzing Complex Materials with Machine Learning, Paul 
Pigram, W. Gardner, S. Bamford, D. Winkler, B. Muir, R. Sun, S. Wong, La 
Trobe University, Australia 

Our ability to analyze and understand any physical, chemical, or biological 
material relies on accurately determining its structure, characteristics, and 
responses. Contemporary analytical techniques produce large volumes of 
data from pointwise sample analyses (one dimensional (1D) data), maps of 
compositional distributions (two dimensional (2D) data), and depth profiles 
showing composition throughout a sample volume (three dimensional (3D) 
data). 

Correlative analyses linking data from the same sample, obtained by 
different analytical techniques or different operating parameters, are 
becoming critically important. Different analytical perspectives on the same 
sample enhance the richness and depth of the conclusions that can be 
drawn from it. 

Recent advances in analytical science have resulted in an overwhelming 
avalanche of data – the “big data” problem. In our lab a single time-of-flight 
secondary ion mass spectrometry (ToF-SIMS) experiment might collect a 
map (512 x 512 pixels) with 2000 mass spectral peaks of significant 
intensity in 2 – 10 minutes. These half a billion data points all have differing 
degrees of significance. 

In many cases, only a small number of peaks, 10 – 200, may be judged to be 
characteristic of a specific sample, and the rest of the data may be 
discarded. However, there are significant risks that such analyses are 
biased, and may miss important but subtle trends. 

There is a very substantial knowledge gap in our ability to find and make full 
use of the information and knowledge contained in large scale data sets. 
This gap is driving rapid international progress in the application of 
materials informatics and machine learning to analytical surface science. 

This presentation will highlight our work on applying artificial neural 
network approaches to analysis of a variety of very large hyperspectral data 
sets to better understand complex materials and their interactions. 
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1:40pm CA+AS+LS+NS+SS+VT-MoA-1 In situ Spectroscopies of Interfacial 
Reactions and Processes in Batteries, Feng Wang, Argonne National 
Laboratory INVITED 

The performance and lifetime of batteries, whether they are traditional 
lithium-ion, solid-state, or other types, strongly depend on the 
effectiveness and stability of electrochemical interfaces within the devices. 
To design battery materials and interfaces with desired functionality, it is 
crucial to have a mechanistic understanding of the interfacial reactions and 
processes occurring during battery operation. This necessitates developing 
advanced techniques capable of characterizing local structures and 
capturing non-equilibrium dynamics at electrochemical interfaces, with the 
relevant spatial, time resolution and chemical sensitivity, both to light 
elements (H, Li, O) and heavy ones. Herein, we present the development 
and application of in situ spectroscopies specialized for probing interfacial 
reaction and processes in lithium-ion and solid-state batteries. With specific 
examples from our recent studies, we will show how to correlate the 
structure and function of electrochemical interfaces through in situ 
spectroscopy characterization, thereby gaining insights into the design and 
processing of battery materials, electrolytes and other components. 
Towards the end of this talk, we will discuss emerging opportunities in data-
driven experimentation, analysis, and modeling for closed-loop battery 
development to accelerate the transition from lab discovery to commercial 
deployment. 

2:20pm CA+AS+LS+NS+SS+VT-MoA-3 Novel Strategies for the 
Characterization of the Next-Generation Energy Storage Materials by ToF-
SIMS: From an in-Situ Exploration to an Operando Measurement, Tanguy 
Terlier, Q. Ai, S. Sidhik, A. Mohite, J. Lou, Rice University INVITED 

Recently, advances in instrumentation and sample preparation have 
permitted a rapid development for characterizing a wide range of 
applications such as next-generation energy storage materials. Developing 
new materials is one of the most crucial topics for emerging technologies. 
However, the complexity of these materials in their structures makes them 
particularly challenging for numerous characterization and analytical 
techniques. Exploring chemical composition and the potential chemical 
reactions such as degradation, diffusion, or doping is crucial to understand 
advanced materials and to transfer the new technologies to the industry. 
Among the most suitable characterization tool, time-of-flight secondary ion 
mass spectrometry (ToF-SIMS) is a very sensitive surface analytical 
technique providing detailed elemental and molecular information about 
the surface, thin layers, interfaces, and full three-dimensional analysis of 
the samples. 

Thanks to the advances in ToF-SIMS characterization, understanding of the 
chemical composition and the different components in the complex 
structures, permit a deeper exploration and a better knowledge in the next-
generation energy storage materials such as batteries, perovskites, and 2D 
materials. 

Firstly, we will focus on the characterization of batteries. Initially, we will 
discuss the sample preparation and our specific setup for transferring the 
specimens from the inert atmosphere in the glovebox to the ultra-high 
vacuum chamber of our instrument. We will illustrate the possibility to 
study the reversibility of the chemical composition between pristine, 
charged, and discharged batteries using surface mass spectrometry by ToF-
SIMS in operando conditions. Then we will compare three methods of 
cross-sectioning used to identify the interfacial species in a composite 
cathode. 

Secondly, we will show a study of an in-depth distribution of the 3D/2D 
heterostructures for perovskite solar cells where we have been able to 
identify individually the 3D and 2D heterostructures along with the depth 
of the film. Then, we will illustrate the characterization of interdiffusion in 
quasi-2D perovskite light-emitting diodes as a function of the organic ligand 
layer inserted into the perovskite crystals. 

Finally, we will demonstrate how the retrospective analysis using ToF-SIMS 
can be very powerful and useful for exploring any single feature in 2D 
materials. Typically, ToF-SIMS acquisition is recording a full mass range 

spectrum per pixel (or voxel), which permits to isolate and to decorrelate 
specific regions of interest for resolving interfaces, diffusion, and doping in 
thin 2D structures. We will present how to treat a 3D volume image of a 
multilayer perovskite device for extracting useful information. 

3:00pm CA+AS+LS+NS+SS+VT-MoA-5 Advanced In-Situ and Ex-Situ S/TEM 
Probing of Interfacial Process in Rechargeable Batteries, Chongmin Wang, 
Pacific Northwest National Laboratory 

In-situ diagnosis appears to be one of the essential methods for gaining 
insights as how an electrode material failure, therefore feeding back for 
designing and creating new materials with enhanced battery performances. 
In this presentation, I will highlight recent progress on ex-situ, in-situ and 
operando S/TEM for probing into the structural and chemical evolution of 
interfacial process in energy storage materials. Both ex-situ and In-situ high 
resolution imaging enables direct observation of structural evolution, phase 
transformation and their correlation with mass, charge and electron 
transport, providing insights as how active materials failure during the cyclic 
charging and discharging of a battery. In perspective, challenges and 
possible direction for further development of the in-situ S/TEM imaging 
and spectroscopic methods for energy storage materials and other field will 
also be discussed. Most importantly, integration of different analytical tools 
appear to be the key for capturing complementary information. 

3:20pm CA+AS+LS+NS+SS+VT-MoA-6 Investigating sp2 and sp3 Carbon 
Ratios by XPS: A Study of the D-Parameter and a New Second Plasmon 
Loss (2PL) Parameter, Alvaro Lizarbe, G. Major, B. Clark, Brigham Young 
University; D. Morgan, Cardiff University, UK; M. Linford, Brigham Young 
University 

The D-parameter provides a useful estimate of the ratio of the sp2 and sp3 
carbon in a sample. It is the energy difference between the maximum and 
minimum of the derivative of the C KLL Auger peak. The D-parameter can 
be an important analytical resource for diamond samples, as the quality of 
diamond depends on the sp3 to sp2 carbon ratio and any lattice impurities. 
For example, the highly sought after type 2a diamonds, which are colorless 
and free from impurities, consist almost entirely of sp3 carbon. According to 
the universal curve for XPS, electrons with different kinetic energies have 
different mean free paths. Thus, electrons with different kinetic energies 
sample materials at different depths. In the case of carbon, the KLL Auger 
peak comes shallower in a material compared to the C 1s signal, which is a 
result of electrons with much higher kinetic energies. That is, a limitation of 
the D-parameter is that it is based on the C KLL Auger peak, found at 
around 1220 eV, while it is often related to the C 1s peak located at 
approximately 284.8 eV. Thus, the D-parameter is much more sensitive to 
adventitious carbon contamination. In an effort to derive a parameter that 
will be more representative of the amounts of sp2 and sp3 carbon in a 
material, we have examined the plasmon loss peaks of the zero-loss C 1s 
peak of direct current chemical vapor deposition (DC-CVD) diamonds, 
carbon nanotubes, and graphitic materials such as HOPG. By analyzing the 
second plasmon loss signal of the C 1s narrow scan, we obtain a new 
parameter for analyzing carbonaceous materials: the 2PL parameter. The 
2PL parameter is the difference in energy between the second plasmon loss 
signal and the C 1s peak. We compare the traditional D-parameter with the 
2PL parameter for various materials. They correlate quite well. We have 
also investigated various mathematical methods of deriving the 2PL 
parameter, including via a weighted average of the second plasmon loss 
and C 1s signals. Ultimately, because the 2PL parameter involves signals 
that are closer to the C 1s photoemission binding energy, we believe it may 
be more representative of the full chemistry of carbonaceous materials. 

4:00pm CA+AS+LS+NS+SS+VT-MoA-8 Solid-Liquid Interfaces for Energy-
efficient Chemical Separation of Critical Minerals and CO2 Conversion, 
Manh-Thuong Nguyen, V. Prabhakaran, D. Heldebrant, G. Johnson, Pacific 
Northwest National Laboratory INVITED 

Chemical separations consume around 15% of the energy used by industry 
today. It is thus critical to develop energy- and material-efficient 
approaches for large-scale separations. In the first part of this presentation, 
I will illustrate how we employ modified 2-dimensional materials and 
solvents to separate critical minerals including rare earth elements. Polar 
functional groups present at the interface of graphene oxide laminate 
membranes are demonstrated to improve the selectivity of metal cations 
separated by both adsorption and sieving. Hydrophobic ionic liquid 
molecules including 1-ethyl-3-methylimidazolium chloride, when used as a 
minor solvent component, are shown to increase the energy efficiency of 
the desolvation of aqueous lanthanide cations in electrochemical 
separations. In the second part, I will present studies exploring the use of 
functionalized hexagonal boron nitride (h-BN) membranes to separate CO2 
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from multicomponent gas mixtures. Strategies for improving CO2 separation 
selectivity and efficiency, such as chemical functionalization and 
engineering the dimensions of interlayer transport channels, will be 
discussed. Finally, I will present studies on the electrochemical conversion 
of CO2 into value added chemical feedstocks such as methanol on 
membrane-supported catalysts. Insights into the effects of local structure 
modification and confinement on catalytic processes will be presented. 

4:40pm CA+AS+LS+NS+SS+VT-MoA-10 Buried Interfaces of Ir 
Photodetector Devices Analyzed with Lab-Based Xps/Haxpes, Roman 
Charvier, M. Juhel, STMicroelectronics, France; O. Renault, Univ. Grenoble-
Alpes, CEA, Leti, France; A. Valery, D. Guiheux, L. Mohgouk Zouknak, 
STMicroelectronics, France; B. Domenichini, ICB UMR 6303 CNRS-Université 
de Bourgogne, France 

The development of new IR photodetectors should respond to challenges in 
order to reach best performances. A major objective is to understand 
critical interfaces that play an important role in the final device properties. 
This work addresses to chemical analysis of molybdenum oxide (MoO3-x) 
used as hole transport material which is deposited between a 
photosensitive material and top electrode often made of indium-tin oxide 
(ITO). Such critical interfaces are typically located under 20 to 50 nm under 
the surface. 

In the case of MoO3-x, the stoichiometry is generally controlled by X-ray 
photoelectron spectroscopy (XPS) which is well-known to obtain chemical 
data close to the material surface (analysis depth < 10 nm). Two methods 
can be used to analyse deeper buried layers: (i) the use of hard X-rays to 
perform Hard X-ray PhotoElectron Spectroscopy (HaXPES) and thus 
generate photoelectrons having a kinetic energy able to go through several 
tens of nm; (ii) the etching of the surface by means of an Ar+ beam (having 
an energy from 0.5 to 3 keV) in order to remove the superficial layers giving 
access to the underlying layers. In the former case, the analyzed thickness 
remains far below 100 nm while in the latter case, the chemistry of the 
surface atoms are often modified by argon ion beam. It is then necessary to 
mix the two approaches to allow the chemical analysis of buried interfaces. 
This analysis way is used here to characterize the stoichiometry of MoO3-x 
thin films buried under 50 nm of ITO using chromium Kα hard-X-ray from 
lab-based HaXPES. 

5:00pm CA+AS+LS+NS+SS+VT-MoA-11 Detection and Discrimination of 
Aquatic Toxins Targeting Voltage Gated Sodium Channels Using Static ToF-
SIMS Imaging, Jiyoung Son, K. Engbrecht, J. Mobberley, PNNL 

Neurotoxins from aquatic microorganisms, such as cyanobacteria and algae, 
have been a public health concern due to their harmful impacts on the 
nervous systems of animals, including humans. A subset of these 
neurotoxins, including saxitoxin and brevetoxin, bind to and alter the 
function of voltage-gated sodium channels, which are essential to 
generating the cell membrane action potential. Existing detection and 
categorization methods, such as PCR and antibody-based enzyme-linked 
immunosorbent assays, are too specific and they require live animals like 
the mouse bioassay. They also require time-consuming and expensive 
sample preparation for analysis using LC-MS/MS and HPLC. In this project, 
we developed a method to detect the activity of the aquatic sodium 
channel neurotoxins, brevetoxin and saxitoxin, using a cell-based process. 
We specifically examined the impact of these two neurotoxins on HEK-293 
cells, a robust cell line that has been transfected with a voltage-gated 
sodium channel gene, SCN1A, in order to better study neurotoxins. We 
cultured a layer of cells onto disinfected silicon chips, exposed the cells to 
neurotoxins, performed chemical fixation, and then air-dried the chips. We 
also prepared mock exposed samples where the cells on the silicon chips 
were not exposed to neurotoxins, but just the solutions each neurotoxin 
was resuspended in, either a 3mM HCl solution (mock saxitoxin) or a 50:50 
ACN: water solution (mock brevetoxin). Control samples, which just 
exposed cells to cell culture media only, gave us a baseline reference. Dried 
samples were analyzed with mass spectral imaging using time-of-flight 
secondary ion mass spectrometry (ToF-SIMS). After collecting a series of 
spectral data, we utilized an in-house MATLAB tool to run principal 
component analysis (PCA) as previously described (Yu et al., 2020). Our 
initial statistical analysis of SIMS spectral data using PCA shows a noticeable 
difference in peak trends between neurotoxin and mock-exposed cells as 
well as neurotoxin-exposed and control cells. Our approach utilizes 
chemical imaging to develop a threat-agnostic model system for detecting 
and classifying neurotoxin activity. The technology and protocols developed 
from this work could transition to other rapid cellular assays for pathogenic 
and chemical threats. 

Reference 

Yu, J., Zhou, Y., Engelhard, M. et al.In situ molecular imaging of adsorbed 
protein films in water indicating hydrophobicity and hydrophilicity. Sci 
Rep10, 3695 (2020). https://doi.org/10.1038/s41598-020-60428-1 
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8:00am CA+AS+LS+LX+MN+SE+SS-TuM-1 Hypervelocity Nanoprojectile 
Impacts on Graphene, Graphene-Solid/Liquid Interphases: From 
Mechanisms of Interaction/Ejection to Practical Applications, Dmitriy 
Verkhoturov, Texas A&M University; S. Lee, Mayo Clinic; M. Eller, California 
State University Northridge; M. Gołuński, S. Hrabar, Jagiellonian University, 
Poland; S. Verkhoturov, Texas A&M University; Z. Postawa, Jagiellonian 
University, Poland; A. Kolmakov, National Institute for Science and 
Technology (NIST); A. Revzin, Mayo Clinic; E. Schweikert, Texas A&M 
University INVITED 

Presented here are the experiment and theory on processes accompanying 
the impacts of C60 and Au400 projectiles (~1 keV/atom) on graphene/matter 
interphases. A variety of targets were used: a) free standing graphene, b) 
molecules and extracellular vesicles (EVs) deposited on free standing 
graphene, c) interphases graphene-solids/liquids, d) EVs deposited on 
functionalized monocrystals. 

Two custom-built Cluster ToF secondary ion mass spectrometry (SIMS) 
devices with similar parameters were used. The experiments were run in 
the event-by-event bombardment/detection mode where the regime of 
bombardment is super-static1. The analyzed surfaces were bombarded at 
the rate of ~1000 impacts/sec with 1-6×106 impacts collected on a surface 
area of 50-500 µm in diameter. This regime allows acquisition of individual 
mass spectra for each impact, thus allowing the comparison of 
experimental data with MD simulations at the level of single projectile 
impacts. The method allows detection of ejecta in reflection (3D case) and 
transmission (2D case) directions. 

The mechanisms of ejection from 2D and 3D materials (including graphene-
solid/liquid interphase) are different. For example, in the case of C60 
impacts on a molecular layer deposited on graphene (2D case) the 
mechanism of ejection is described with the “trampoline” model2. For the 
3D case of graphene-solid/liquid interphase, graphene suppresses the 
ejection of molecules. The compression of matter in the excitation volume 
around the impact is not sufficient to destroy the graphene3. 

Our method allows to test individual nano-objects. A biological example is 
EVs. There were anchored on functionalized Si and graphene substrates, 
with the EVs labeled with antibodies carrying lanthanide tags (Ab@Ln) for 
normal hepatic and liver cancer markers. Up to four Ab@Ln tags could be 
detected simultaneously, enabling analysis of population heterogeneity 
with single EV resolution and to distinguish between normal and cancer EVs 
based on surface marker expression. Using co-localization of cancer 
biomarkers, it is possible to find small subpopulation of EVs originating 
from cancerous cells potentially allowing for early cancer detection. The 
sensitivity of the method can be increased several folds via transmission 
configuration where ejecta are emitted and detected in the forward 
direction. In this case nano-objects, such as EVs, are anchored on graphene 
oxide, a 2D material. 

1S.V. Verkhoturov et al. J. Chem. Phys. 150 (2019) 

2R.D. Rickman et al. Phys. Rev. Lett. 92, 047601 (2004) 

3 D.S. Verkhoturov et al. Biointerphases 11, 02A324 (2016) 
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Grant 

8:40am CA+AS+LS+LX+MN+SE+SS-TuM-3 Applying in Situ Bias During TOF-
SIMS Analysis to Investigate Ion Migration in Perovskite Devices, Steven 
Harvey, National Renewable Energy Laboratory; I. Gould, University of 
Colorado, Boulder; D. Morales, M. McGehee, University of Colorado 
Boulder; A. Palmstrom, National Renewable Energy Laboratory 

Metal Halide Perovskite Photovoltaics have the potential to be a game-
changing technology in photovoltaics, with low cost solution processing 
inherent to the technology and a rapid progress in device efficiency and 
stability. Understanding ion migration in these materials has lead to 

improvements in both efficiency and reliability, and further understanding 
of these phenomena is of great importance. 

Time of flight secondary ion mass spectrometry is well suited to provide 
unique insight for this class of materials, as it can reveal the distribution of 
both the organic and inorganic components of a device stack (both through 
the depth as well as laterally with 2-D and 3-D imaging). We will briefly 
cover our past work on technique development for this class of materials, 
before presenting new work where an in situ electrical bias was placed on a 
perovskite device while under investigation with TOF-SIMS. This was 
completed with simple commercial off the shelf components in an ION-TOF 
TOF-SIMS V instrument and could be easily implemented on other 
instruments. A device stack of glass / ITO / Me-4PACz / 
DMA0.1FA0.6Cs0.3Pb(I0.8Br0.2)3 / LiF (1 nm) / C60 (30 nm) / SnOx (15 
nm)/Au (20 nm) was used for this study. An electrical bias was applied 
between the top gold contact and the bottom ITO contact during TOF-SIMS 
measurements. By applying a +0.75V and -0.75V forward and reverse bias 
to the device, a driving force for negatively charged halide ions is created to 
migrate towards the back or front of the device, respectively. The in-situ 
data shows the halide ion migration towards the back ITO contact after the 
forward bias is applied. The negative bias was then applied and the halide 
ions migrate back towards the front of the device and return to the original 
unbiased state. In both cases the formamidinium and lead traces do not 
show similar migration, showing only the charged species in the device are 
affected by the bias. The results show a framework that can be used for 
further study. Potential complications with the analysis of this type of data 
will be discussed. 

9:00am CA+AS+LS+LX+MN+SE+SS-TuM-4 Oxidation of a Single Fe 
Nanoparticle at the Nanoscale and Real-Time by Operando Atom Probe, 
Sten V. Lambeets, Pacific Northwest National Laboratory; N. Cardwell, I. 
Onyango, Washington State University; T. Visart de Bocarmé, Université 
libre de Bruxelles, Belgium; J. McEwen, Washington State University; D. 
Perea, Pacific Northwest National Laboratory 

Physics governing surface chemical reactions and interfaces involved in 
heterogeneous catalysts fundamentally depends on the synergistic 
interactions between reactive gases and specific surface structures. Surface 
science techniques are continuously evolving to help bridge knowledge 
gaps between fundamental research and real-world applications. In the 
past decade, an increasing number of analytical techniques successfully 
achieved their evolution towards an in situ and operando version of 
themselves, and recently such approaches are being developed for atom 
probe microscopy (APM) techniques. In this work, we will present the 
recent advances in the conversion of Atom Probe Tomography (APT) to 
study surface dynamics of O2/Fe using two different APM techniques and 
modifications: Field Ion Microscopy (FIM), and Operando Atom Probe 
(OAP). 

 
 
 

APM techniques are capable of imaging the apex of sharp needles with 
nanometric lateral resolution, which can be seen as model nanoparticles. 
FIM is used to image such needles with atomic resolution and to identify 
the crystal orientation along with the local surface reaction dynamics 
during oxygen interaction with Fe. The resulting FIM image corresponds to 
a stereographical projection of the apex and allows the identification of the 
crystal orientations with atomic resolution. Regular APT, from which the 
OAP derives, relies on the thermally assisted field evaporation of positively 
charged ions from a needle shaped specimen. In regular use, the APT is 
performed in an Ultra High Vacuum (<10-11 mbar) while the sample is 
cooled at 50K. The OAP modification consists of performing the atom probe 
analysis in the presence of reactive gas at 300 K. 

 
 
Once the FIM characterization is complete the sample is maintained at 
300K before starting APT analysis and introducing 1.1×10-7mbar of pure O2. 
As soon as the O2 is introduced, we can measure the surface formation of 
Fe oxides by monitoring the local concentration of Fe2On+ ion species 
extracted from the surface over time. We can track the local concentration 
over the different surface regions in real time. We observe the progressive 
surface oxidation starting from open facets structures, such as Fe{222} and 
Fe{112}, towards the central Fe(011) and the Fe{024} which show 
significantly higher resistance toward oxidation. The combination of the 
different concentrations allows us to reconstruct the full movie of the 
surface oxidation in real-time. However, since the measurements are 
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performed in the presence of very strong electric fields (>10 V/nm), it is 
necessary to discuss the potential influences of it on the system as well. 
 

9:20am CA+AS+LS+LX+MN+SE+SS-TuM-5 Reporting Interfaces: 
Unconventional Excitation of Interfaces Enables Exquisite Gas Sensing 
Toward Our Sustainable Future, Radislav Potyrailo, GE Research INVITED 

As our society is developing solutions for more sustainable types of energy, 
the need for reliable, yet affordable tools for monitoring of emissions of 
greenhouse and other gases in urban and industrial environments is a 
substantial undertaking for two main reasons. First, to achieve a desired 
accuracy, existing gas monitoring solutions in complex backgrounds utilize 
traditional analytical instruments. While their mathematical design 
principles provide needed independent response outputs, their hardware 
design principles do not allow cost-effective ubiquitous implementations. 
Second, all gas sensors based on interface-driven interactions between 
gases of interest and sensing materials are single-output devices. By their 
original design principles from early last century, these sensors operate well 
only when levels of interfering gases are low. Once levels of interfering 
gases increase, existing sensors lose their accuracy because of competing 
interactions between the sensor interface and numerous interfering gases 
versus a gas of interest. 

In this talk, we will present gas sensors that we built following mathematics 
of traditional analytical instruments but with our own different types of 
independent variables for detection of multiple gases with enhanced 
accuracy and stability. These sensors are multivariable gas sensors where 
independent response outputs are provided by our unconventional 
methodologies of excitation of interfaces between a sensing material and 
different ambient gases. We will show that our approach results in a 
reliable differentiation of one or more analyte gases in complex 
backgrounds of interfering gases with an individual multivariable gas 
sensor. This exquisite (i.e., accurate and reliable) gas sensing provides an 
affordable technical solution for monitoring of emissions of greenhouse 
and other gases in urban and industrial environments. Such technical 
solution is mathematically not feasible using conventional single-output 
sensor designs. We will also show that such multivariable gas sensors have 
the ability for self-correction for sensor drift. Our approach for the multi-
gas detection and drift self-correction should allow implementations of gas 
sensors in diverse applications that cannot afford weekly, monthly, or 
quarterly periodic maintenance, typical of traditional analytical 
instruments. 
 

11:00am CA+AS+LS+LX+MN+SE+SS-TuM-10 A “Simple” Approach to 
Combine Electrochemistry and Operando Near Ambient Pressure XPS 
Studies, F. Mirabella, Paul Dietrich, A. Thissen, SPECS Surface Nano Analysis 
GmbH, Germany INVITED 

Electrochemical water splitting is an environmentally friendly technology to 
store renewable energy in the form of chemical fuels. Among the Earth-
abundant, first-row transition metal-based catalysts, Ni and Fe oxides have 
shown promising performances as effective and low-cost catalysts of the 
oxygen evolution reaction (OER) in alkaline media. Notably, their structure 
evolves under oxygen evolution operating conditions with respect to the as-
prepared catalysts but these changes and consequently the active sites 
have not been identified yet due to the difficulties associated with surface 
analysis measurement under working conditions (operando). 

In this presentation, we will demonstrate the enormous potential of 
laboratory NAP-XPS for investigations of solid-liquid interfaces in 
electrochemical systems at elevated pressures (≤ 25 mbar), also illustrating 
the ease of use of this specific setup. We will show a versatile three-
electrodes electrochemical setup that allows for operando studies of solid-
electrolyte interfaces, i.e., of nickel oxide foils as cathode for OER in alkaline 
environment as a simple laboratory NAP XPS experiment. 

11:40am CA+AS+LS+LX+MN+SE+SS-TuM-12 Recent Developments in 
Probing Buried Interfaces Using Standing-Wave Photoelectron 
Spectroscopy, Slavomir Nemsak, Lawrence Berkeley Lab 

Standing-wave photoelectron spectroscopy of multi-layer structures proved 
to be a very powerful technique for probing solid/solid, but also solid/liquid 
and solid/gas interfaces. Its superior depth selectivity and non-destructive 
nature were crucial to answer key questions in problems spread over 
several scientific fields, such as emergent phenomena at complex oxide 
interfaces [1], artificial multiferroics [2], adsorption mechanisms in liquids 
[3], corrosion [4], and electrocatalysis [5].These achievements were only 
possible thanks to innovative approaches both in experiments and 

analyses, including development of X-ray optical simulations package [6] 
and its coupling with the black-box optimizer [7]. In this talk I will introduce 
novel tools and approaches for standing-wave experiments and I will 
highlight some of the recent applications [8,9,10]. 
 

[1] S. Nemsak et al., Physical Review B93 (24), 245103 (2016). 

[2] H. P. Martins et al., arXiv preprint arXiv:2012.07993. 

[3] S. Nemsak et al., Nature Communications5, 5441 (2014). 

[4] O. Karslioglu et al., Faraday Discussions180, 35 (2015). 

[5] C. Baeumer et al., Nature Materials20, 674 (2021). 

[6] S.-H. Yang et al., Journal of Applied Physics113, 073513 (2013). 

[7] O. Karslioglu et al., Journal of Electron Spectroscopy and Related 
Phenomena230, 10 (2019). 

[8] M Scardamaglia, et al., Journal of Electron Spectroscopy and Related 
Phenomena 262, 147281 (2023). 

[9] G. Conti et al., Journal of Micro/Nanopatterning, Materials, and 
Metrology 20, 034603 (2021). 

[10] H.P. Martins et al., Journal of Physics D: Applied Physics 56, 464002 
(2021). 

 
 

12:00pm CA+AS+LS+LX+MN+SE+SS-TuM-13 The Influence of Surface 
Structure and Electrostatics on Measuring Unoccupied Electronic States 
via Low Energy Inverse Photoemission Spectroscopy (LEIPS), James Johns, 
Physical Electronics USA 

A material’s energetic distribution of electronic states near the fermi level is 
a key physical property for determining how it behaves in electronic, 
chemical, and optical applications.Photoemission has long been the gold 
standard for measuring the occupied electronic states below the Fermi 
level and is one of the most common surface science techniques 
worldwide.Inverse photoemission (IPES), the related process whereby an 
electron is absorbed at the surface and a photon is emitted, is similarly a 
very powerful tool for measuring the unoccupied electronic states. 
Unfortunately, the intrinsically lower rate for IPES and technical hurdles 
related to relevant photodetectors has historically necessitated the use of 
electron sources with sufficient energy to damage all but the most 
chemically robust surfaces. 

The availability of narrow bandpass optical filters at UV photon energies 
between 3.5 and 6 eV over the past decade have enabled the development 
and commercialization of Low Energy Inverse Photoemission Spectroscopy 
(LEIPS)1,2.Efficient detection of low energy UV photons (lower than 
traditional IPES at 9-10 eV) enables the use of low energy electrons (below 
5 eV) which avoid damaging sensitive materials including organics.This key 
innovation has revitalized interest in IPES because the technique can now 
be applied to molecular materials and interfaces relevant to wide range of 
applications e.g. batteries, photovoltaics, organic semiconductors and 
OLEDs, chemical sensors.Furthermore, optical UV filters also improve the 
energy resolution, further enhancing the appeal of LEIPS over traditional 
IPES. 

Like any surface science technique, the quality of LEIPS data depends on 
both the instrumentation and sample preparation. Here, I will discuss the 
material requirements and limitations for successful LEIPS measurements, 
several of which differ from more common techniques such as XPS, SPM, or 
electron microscopy.I will also present LEIPS data from taken at the 
interface between two metals and explain those results using calculated 
trajectories of the electron beam.Finally, I will illustrate a key difference 
between LEIPS, which probes the true unoccupied electronic density of 
states, and optical methods, such as optical spectroscopy or EELS which 
measure the joint density of states, by presenting LEIPS spectra of an 
excitonic 2D material. 

1 Yoshida, H; “Near-ultraviolet inverse photoemission spectroscopy using 
ultra-low energy electrons” Chem. Phys. Lett.539-540, 180-185, (2012) 

2Lida, S.; Terashima, M; Mamiya, K; Chang, H. Y.; Sasaki, S; Ono, A; Kimoto, 
T; Miyayama, T; “Characterization of cathode-electrolyte interface in all-
solid-state batteries using TOF-SIMS, XPS, and UPS/LEIPS” J. Vac. Sci. & 
Tech. B, 39, 044001, (2021) 
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8:00am LS+AC+LX+MI+TH-ThM-1 Developments of High Resolution X-Ray 
Spectroscopic Tools for Probing Structural Properties of Actinide System 
from the Metal and Ligand Perspective, Tonya Vitova, Karlsruhe Institute 
of Technology, Institute for Nuclear Waste Disposal, Germany INVITED 

 
High energy resolution X-ray absorption and emission spectroscopic 
techniques became indispensable methods in actinide and radionuclide 
research.1-5 One important motivation is studies concerning the 
mobilization and retention of long-lived actinides and fission products in 
geochemical processes relevant for safety studies of a potential deep 
geological nuclear waste repository.3-4 In-depth insights into the actinide-
ligand binding properties is a main application of these novel experimental 
techniques too.6 Development at the ACT experimental station of the CAT-
ACT wiggler beamline at the Karlsruhe Institute of Technology (KIT) Light 
Source will be discussed. One experimental technique especially powerful 
to differentiate oxidation states of actinides (An) is the An M4,5-edge high-
energy resolution X-ray absorption near-edge structure (HR-XANES).4 This 
presentation highlights the latest technological developments at the ACT 
station enabling the HR-XANES spectroscopic technique for samples with 
low radionuclide loading down to 1 ppm in combination with a cryogenic 
sample environment reducing beam-induced sample alterations.7-8 It paves 
the way for the examination of coupled redox/solid-liquid interface 
reactions.8 Examples of applications of An M4,5 edge core-to-core and 
valence band resonant inelastic X-ray scattering (CC-RIXS and VB-RIXS) for 
probing the electronic structure and binding properties of the actinide 
elements will be illustrated.6 First results obtained using a newly developed 
versatile chamber for soft X-ray spectroscopy at the X-SPEC beamline at the 
KIT Light Source will be discussed. 

This work has received funding from the European Union's Horizon 2020 
research and innovation program under grant agreement No. 847593. We 
also acknowledge funding from the ERC Consolidator Grant 2020 under the 
European Union’s Horizon 2020 research and innovation program (grant 
agreement No. 101003292).  
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8:40am LS+AC+LX+MI+TH-ThM-3 High-Energy-Resolution X-Ray 
Spectroscopy and Actinides Research at SLAC, Dimosthenis Sokaras, SLAC 
National Accelerator Laboratory INVITED 

Nowadays, high-energy-resolution x-ray spectroscopy is a well-established 
and powerful tool available in state-of-the art synchrotron facilities. The 
suppression of the core-hole lifetime contribution within the conventionally 
broad spectroscopic features of actinide series has revitalized the role of x-
ray spectroscopy in the study of actinide complexes and intermetallics. 
Numerous studies have leveraged the fine structure of M or L absorption 
edge resonances to sensitively probe and quantify the oxidation state, 5f 
delocalization, and ligation of the actinides species. The increasing 
availability of large solid angle instruments coupled with high flux 
beamlines is quickly enabling such advanced studies for dilute samples or 
samples under special sample environments. In this presentation we will 
summarize the high-resolution tender and hard x-ray spectroscopy 
advances at SLAC and the actinides research program that these capabilities 
have enabled during the last decade. 

9:20am LS+AC+LX+MI+TH-ThM-5 New Insight Into Excited-State Chemical 
Dynamics Using Ultrafast X-Rays:Recent Highlights, Future Opportunities 
& Development Plans at LCLS, Robert Schoenlein, Linac Coherent Light 
Source - SLAC National Accelerator Laboratory INVITED 

Ultrafast X-rays from free-electron lasers (XFELs) are driving a qualitative 
advance in our understanding of condensed-phase chemical dynamics and 
catalysis. Ultrafast soft X-rays provide element-specific mapping of chemical 
bonds, charge distributions, oxidation states and frontier orbitals. Ultrafast 
hard X-ray pulses reveal the atomic scale structural dynamics of excited-
state dynamics – revealing relaxation pathways, and the coupling of atomic 
structure, electronic structure, and solvent dynamics. This talk will highlight 
recent results from the Linac Coherent Light source (LCLS) using advanced 
ultrafast X-ray methods to track excited-state charge-transfer and relaxation 
pathways, and reveal the influence of molecular structural dynamics, and 
solvent coupling. Notably, multi-modal methods combining time-resolved 
X-ray scattering and spectroscopy represent a powerful approach for linking 
X-ray experimental observables with theory to achieve a deeper 
understanding of excited-state dynamics to advance the development of 
design principles for creating molecules, complexes, and assemblies with 
desired functions. 

In addition, new science opportunities enabled by the nearly-completed 
upgrade of LCLS (LCLS-II) coupled with advanced instrumentation and 
methods will be discussed. LCLS-II will provide tunable soft X-ray pulses 
(0.25 to 5.0 keV) at high repetition rate (up to 1 MHz) and hard X-rays up to 
25 keV (at 120 Hz). This unprecedented capability will support powerful 
new methods such as time-resolved resonant inelastic X-ray scattering 
(RIXS). The new ChemRIXS instrument is optimized for studying solvated 
complexes with C, N, O (K-edges), 3d transition metals (L-edges), and rare-
earth elements (M-edges) – where 2D RIXS maps of excited-state dynamics 
coupled with quantum chemical calculations will reveal the evolution of 
frontier orbitals. The Tender X-ray Instrument (TXI, 2.1-5.0 keV), now under 
development for LCLS-II, will support time-resolved tender X-ray 
spectroscopy (spanning the 4d transition metal L-edges and key functional 
ligands including P, S, and Cl), coherent scattering, and novel nonlinear X-
ray pump / X-ray probe methods - combining X-rays from two 
independently tunable XFEL sources. 

11:00am LS+AC+LX+MI+TH-ThM-10 Attosecond Studies of Radiolysis at 
XFELs, Linda Young, Argonne National Laboratory INVITED 

We report the first attosecond x-ray pump/x-ray probe transient absorption 
study in condensed phases using a pure liquid water target. With tunable 
two-color attosecond x-ray pulses, the pump ionizes the valence band of 
water and the probe scans the oxygen K-edge absorption region. Theory 
establishes the nature of the detected transient absorption and models the 
observed signal for sub-femtosecond delay times. 

Acknowledgements: This work supported in part by by the US Department 
of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, 
Geosciences, and Biosciences Division under award # DEAC02-06CH11357. 
Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator 
Laboratory, is supported by the U.S. Department of Energy, Office of 
Science, Office of Basic Energy Sciences under Contract No. DE-AC02-
76SF00515. 

critical importance for fields ranging from cancer therapy to the longevity of 
nuclear reactors to space travel. In these applications, radiolysis is initiated 
by a high-energy particle that leads to the ejection of energetic primary 
electrons followed by inelastic and non-adiabatic processes that produce 
damaging low energy electrons and reactive radical species. A microscopic 
understanding of reaction mechanisms, especially in complex systems, is 
missing as typical techniques used to detect prominent species, EPR and UV 
spectroscopies, lack either time resolution or spectral clarity. Tunable 
ultrafast x rays can dissect the radiolysis process. That is, x-ray pump/x-ray 
probe studies can systematically either peel electrons from valence, or, 
eject them from core orbitals and follow the ensuing dynamics on a site-
specific basis. 
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11:40am LS+AC+LX+MI+TH-ThM-12 First Real-Time Tracking of Oxidation 
States During Fast Redox of UO2 Using a Microfluidic Electrochemical Cell 
and HR-XANES, Jennifer Yao, Pacific Northwest National Laboratory; B. 
Schacherl, Karlsruhe Institute of Technology (KIT), Germany; B. McNamara, 
Pacific Northwest National Laboratory; C. Vollmer, Karlsruhe Institute of 
Technology (KIT), Germany; N. Lahiri, E. Ilton, E. Buck, Pacific Northwest 
National Laboratory; T. Vitova, Karlsruhe Institute of Technology (KIT), 
Germany 

Real-time tracking of the oxidation states of a UO2 electrode during 
electrochemical oxidation and reduction was achieved using operando 
high-resolution X-ray absorption near-edge structure (HR-XANES) 
spectroscopy at the ACT station of the CAT-ACT beamline at the KIT Light 
Source, Karlsruhe, Germany. This was made possible by utilizing a particle-
attached microfluidic electrochemical cell (PAMEC) developed at PNNL, and 
employing KIT’s advanced actinide M-edge HR-XANES technique.1-2 The 
PAMEC is a three-electrode system consisting of a working electrode (WE) 
made of the materials of interest a platinum (Pt) reference electrode, and a 
Pt counter electrode.3 The electrochemical analyzer connected to the 
PAMEC device controlled the redox process, e.g., applying constant 
potential on the UO2 WE to reduce (-1.1 V vs Pt) or oxidize it (0.5 V vs Pt), 
while HR-XANES simultaneously scanned its surface chemistry. The U M4-
edge HR-XANES spectra revealed the evolution of U from U(IV) to U(V) and 
finally to U(VI) during the oxidation process. We were able to demonstrate 
the reversibility of this process by reducing the same electrode back to pure 
U(IV), as confirmed by HR-XANES. To our knowledge, this study reports the 
first in-situ and operando measurement of real-time oxidation state 
changes of UO2. The spectra obtained also provided insight into the 
electronic structure of U(VI) in the UO2 alteration process. This successful 
international scientific collaboration showcases the potential of a PAMEC 
for in-situ and operando experiments with UO2 and highlights its promising 
broad application for characterization of spent nuclear fuel systems. 
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12:00pm LS+AC+LX+MI+TH-ThM-13 Use of Artificial Intelligence 
Techniques To Analyze Materials Characterization Data From Actinide 
Containing Materials, Jeff Terry, Illinois Institute of Technology 

We have developed artificial intelligence (AI) based methodology that can 
be utilized to reliably analyze experimental results from Extended X-ray 
Absorption Fine Structure (EXAFS), Nanoindentation, and core level 
photoemission. Specifically, we use a genetic algorithm to extract the 
relevant structural parameters through fitting of the measured spectra. The 
current approach relies on a human analyst to suggest a potential set of 
chemical compounds in the form of feff.inp input files that may be present. 
The algorithm then attempts to determine the best structural paths from 
these compounds that are present in the experimental measurement. The 
automated analysis looks for the primary EXAFS path contributors from the 
potential compounds. It calculates a goodness of fit value that can be used 
to identify the chemical moieties present. The analysis package is called 
EXAFS Neo and is open source written in Python. I will illustrate the use of 
this package with fits of actinide species in the barrier layer of Tristructural-
isotropic (TRISO) encapsulated nuclear fuel particles. The current particle 
design consists of a two-phase uranium-oxide/uranium-carbide kernel of 
19.74% 235U enrichment, a porous carbon buffer layer, and consecutive 
layers of pyrolytic carbon, silicon carbide (SiC) and pyrolytic carbon. The SiC 
layer provides the main barrier to fission product release. Much work has 
gone towards studying metallic fission product interaction in the SiC 
containment layer due to the propensity of metallic fission product release 
as a function of high temperature (safety) testing. Here, I will show how the 
interaction dynamics of plutonium and uranium within this layer have been 
determined through EXAFS measurements that have been fit with AI. One 
of the major benefits of using this technology is that actinide containing 

materials often have edges from higher Z-elements that limit the usable 
range of the spectrum. Our method fits momentum space data which does 
not suffer from transformation artifacts of real space over a small 
momentum range. 
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2:20pm LS+AC+AS+LX+MI+TH-ThA-1 The Impact of Upgraded High-
Brightness Synchrotron Lightsources on the Chemical Speciation of 
Nanoscale Heterogeneous Aggregates and Transformations, Andreas 
Scholl, Advanced Light Source, Lawrence Berkeley National Laboratory
 INVITED 

ALS-U is an ongoing upgrade of the Advanced Light Source (ALS) at Berkeley 
Lab that will endow the ALS with revolutionary x-ray capabilities. The new 
storage ring will enable the production of highly focused beams of soft x-ray 
light that are at least 100 times brighter than those of the existing ALS. 
Applying this technology at the ALS will help us better understand and 
develop new materials and chemical systems needed to advance our 
research needs in energy science, environmental systems research, and 
biosciences in the 21st century. This will create a world-leading platform for 
next-generation soft x-ray and tender x-ray instrumentation. 

Four beamlines with new and upgraded capabilities will become available 
after the upgrade. The FLEXON beamline (FLuctuation and EXcitation of 
Orders in the Nanoscale), a high-brightness coherent soft x-ray beamline, 
will provide x-ray photon correlation spectroscopy and diffraction imaging 
techniques to study electronic, chemical, and magnetic fluctuations in 
quantum materials with nanosecond temporal and nanometer spatial 
resolution. A new ALS-U developed tender x-ray beamline is designed to 
address challenges at the frontiers of diverse scientific areas, ranging from 
soft condensed matter and biomaterials to energy science and Earth and 
environmental sciences. It will offer state-of-the-art nanometer-resolved 
chemical imaging and resonant scattering nanoprobes, enabling operando 
and in situ studies of materials of K-edges of elements (Na through Ca) and 
the M and L edges of lanthanides and actinides. These two beamlines will 
be complemented by two upgraded beamlines for nanometer 3D chemical 
tomography based on ptychography of light elements and first-row 
transition metals and for high-resolution ARPES. 

The high coherent flux of the upgraded ALS will drastically improve the 
speed, sensitivity, and spatial resolution of nanoprobes, enabling the 
speciation and forensic study of nanoscale constituents and contaminants 
via x-ray absorption spectroscopy and fluorescence detection. Chemical 
signatures can be correlated with morphology and compared with chemical 
standards. Operando experiments, for example, of liquid phase systems and 
studies under ambient conditions, will be enabled by specially designed 
sample holders and liquid cells using the high penetration of tender x-rays. 

3:00pm LS+AC+AS+LX+MI+TH-ThA-3 The Advanced Photon Source 
Upgrade: A transformative tool for understanding material structure., 
Jonathan Lang, J. Lang, Argonne National Laboratory INVITED 

The APS is currently undergoing a major upgrade of the facility that will 
increase the brightness of the x-ray beams by factors of up to 500. This 
upgrade will provide transformational capabilities for examining the 
nanoscale structure and electronic configuration of materials and their 
evolution with external stimuli. This presentation with provide an update 
on the current status of the APS-U project, and discuss the new 
opportunities for imaging actinide and rare-earth compounds with this new 
source 

3:40pm LS+AC+AS+LX+MI+TH-ThA-5 Combining Focused Ion Beam 
Sectioning, Soft X-ray Spectromicroscopy, and Non-Negative Matrix 
Factorization to Reveal Acrtinide Chemical Speciation at the Nanoscale, 
Alexander Ditter, D. Smiles, J. Pacold, D. Lussier, Lawrence Berkeley 
National Laboratory; Z. Dai, Lawrence Livermore National Laboratory; A. 
Altman, Lawrence Berkeley National Laboratory; M. Bachhav, Idaho 
National Laboratory; B. Chung, Lawrence Livermore National Laboratory; C. 
Degueldre, Lancaster University, UK; S. Donald, Lawrence Livermore 
National Laboratory; L. He, Idaho National Laboratory; M. Mara, S. 
Minasian, D. Shuh, Lawrence Berkeley National Laboratory INVITED 

Spectromicroscopy methods, combining the chemical insight of 
spectroscopy with microscopy imaging, can give a unique and informative 
view of a sample of interest. Scanning Transmission X-ray Microscope 
(STXM) spectromicroscopy is one such method, utilizing synchrotron 

radiation to probe electronic structure with a spatial resolution in the tens 
of nanometers. Specialized methods like ptychography can push the spatial 
resolution even lower into the single nanometer range. 

Discussed here, STXM spectromicroscopy is applied to two actinide 
samples: spent nuclear fuel, which offers a unique insight into the complex 
environment of nuclear fuel undergoing burnup, and uranium oxide 
allowed to age in a humid environment, which serves as a demonstration of 
the power of this technique for nuclear forensics investigations. These 
samples are created by focused ion beam (FIB) sectioning to generate cross-
sections of ideal thickness for soft x-ray measurements (100-200 nm). The 
FIB method of sample preparation also allows for the measurement of 
highly radioactive spent fuel without containment due to the extremely 
small amount of material present. 

Data analysis is a key component to the understanding of 
spectromicroscopy results for varied samples like these. Non-negative 
matrix factorization (NMF) is employed to identify key components and 
recent efforts to improve NMF to work with noisy individual STXM spectra 
are outlined here. Reproducibility of the analysis is a concern (as with 
similar methods like multivariate curve regression) and methods to 
enhance both reproducibility and interpretability of the results are 
discussed. 

Combining STXM spectromicroscopy, FIB sectioning, and NMF analysis has 
allowed for unique insights into actinide materials. Potential future 
developments utilizing this method for other samples and with advanced 
techniques like ptychography are also discussed. 
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