In Situ Characterization of Thin Film Molybdenum Carbide Using Spectroscopic Ellipsometry

A. Bertuch¹, J. Hoglund², L. Makai², J. Byrnes², J. McBee¹, and G. Sundaram¹

¹Ultratech Inc. 130 Turner Street, Building 2, Waltham, MA, 02453

²SemiLab USA, 101 Billerica Ave, #105, North Billerica, MA 01862

Molybdenum carbide (MoC_X) is an extremely hard transition metal carbide with demonstrated super conductive behavior. Thin film, two-dimensional (2D) molybdenum carbide in a synthesized state with a surface termination group called MXenes has been shown to exhibit either conducting or semiconducting properties and has been identified as a potential thermoelectric material. Synthesis and de-lamination techniques have been demonstrated for 2D Mo₂C by Hamlin *et al.*¹

In this work we characterize the growth mechanism for depositing the first few cycles of plasma enhanced atomic layer deposition (PE-ALD) MoC_x film with the goal of achieving atomically thin continuous MoC_x . PE-ALD grown MoC_x has been demonstrated using (^tBuN)₂(NMe₂)₂Mo with H₂ plasma at 150 °C.² This deposition technique will be explored in greater detail using real time *in situ* spectroscopic ellipsometry (SE) with a wavelength range from 245 to 990 nm. The nucleation and initial film growth rates can be measured through each PE-ALD half cycle reaction to determine and evaluate the mechanism of growth occurring at the film to substrate interface.

Figure 1. Spectroscopic ellipsometry of the first 4 cycles of PE-ALD grown MoC_x at 150 °C on native silicon dioxide.

References

¹J. Hamlin et al., Adv. Funct. Mater. **26**, 3118 (2016).

²A. Bertuch, B Keller, N. Ferralis, J. C. Grossman, and G. Sundaram, J. Vac. Sci. Technol. A **35**, 01B141 (2017).