<u>Supplementary information:</u> Mechanisms limiting conformality in thermal and plasma-assisted ALD investigated by Lateral High Aspect Ratio structures

Karsten Arts¹, Vincent Vandalon¹, Feng Gao², Mikko Utriainen², Riikka Puurunen^{2,3}, Erwin Kessels¹ and Harm Knoops^{1,4}

¹Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

²VTT Technical Research Centre of Finland, Tietotie 3, 02044 Espoo, Finland

³Aalto University School of Chemical Engineering, Kemistintie 1, Espoo, PO Box 00076 AALTO, Finland

⁴Oxford Instruments Plasma Technology, North End, Bristol, BS49 4AP, United Kingdom

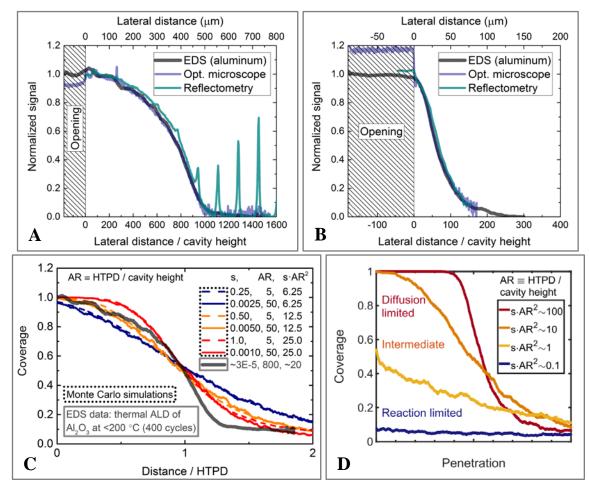


Figure S1: Normalized thickness profiles of Al₂O₃ deposited in Lateral High Aspect Ratio analysis structures supplied by VTT (LHAR3), using (**A**) 400 cycles thermal ALD and (**B**) 300 cycles plasma ALD at 200 °C substrate table temperature. The diagnostics compared in this work (EDS, optical microscopy, reflectometry and focused SE) generally show good correspondence. In (**C**) the thickness profile of (**A**) is compared to Monte Carlo simulations, where the sticking probability *s* and aspect ratio AR at half-thickness-penetration-depth (HTPD) is varied. The shape of the profile seems to depend on the value of $s \cdot AR^2$. As illustrated in (**D**), diffusion-limited growth occurs for high $s \cdot AR^2$, while reaction-limited growth occurs when $s \cdot AR^2$ is low. For $s \cdot AR^2 \sim 10$ an intermediate growth regime is seen, yielding a sloping profile. This is consistent with the sloping profile observed in (**A**), where AR = 800 is reached at a low sticking probability $s \sim 3 \cdot 10^{-5}$ of H₂O with $-CH_3$ at T < 200 °C.¹ For the plasma-assisted ALD case shown in (**B**), the penetration depth is limited by recombination of O radicals. These cases exemplify how LHAR structures can be employed to study ALD chemistry for conformal deposition.

1. V. Vandalon and W.M.M. Kessels, Appl. Phys. Lett. 108, 011607 (2016)