## Study on The Crystallinity and The Dielectric Constant of Zr<sub>x</sub>Ge<sub>1-x</sub>O<sub>2</sub> Films Using Mixed Zr - Ge Precursor by Atomic Layer Deposition.

<u>Ju-young Jeong</u><sup>1)</sup>, Yoogeun Han<sup>1)</sup>, Hyunsik Noh<sup>2)</sup> Hyungsoon Park<sup>2)</sup>, Hyunchul Sohn<sup>1)\*</sup> <sup>1)</sup> Department of Materials Science and Engineering, Yonsei University, Korea <sup>2)</sup> SK Hynix, Korea

\*E-mail : hyunchul.sohn@yonsei.ac.kr

Scaling of Dynamic Random Access Memory(DRAM) requires high k dielectric materials for data storage capacitor.  $ZrO_2$  is favorite material for storage capacitors becasue of large band gap, low leakage current, good thermal stability. Dielectric constant of ZrO2 depends on the crystal structure (monoclinic =19.7, cubic = 36.8, tetragonal=46.6). It was reported that doping of ZrO2 with elements such as Mg, Ca, Y, La, and Ge enhances tetragonal phase of ZrO<sub>2</sub>. In general, such elements are incorporated in ZrO2 using laminated growth structure.

In this study, Ge-doped ZrO<sub>2</sub> films were fabricated using mixed Zr-Ge precursor ( CpZr[N(CH<sub>3</sub>)<sub>2</sub>]<sub>3</sub>] and C<sub>13</sub>H<sub>26</sub>GeN<sub>4</sub> = 10 : 1) in the form of Zr<sub>x</sub>Ge<sub>1-x</sub>O<sub>2</sub>. The Zr<sub>x</sub>Ge<sub>1-x</sub>O<sub>2</sub> films are grown by atomic later deposition with ozone as the oxidant at 300 °C and annealed in N<sub>2</sub> atmosphere at 500 °C, 30s using rapid thermal annealing(RTA). The chemical bonding and structural properties of Zr<sub>x</sub>Ge<sub>1-x</sub>O<sub>2</sub> films are investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD). XPS shows that as-grown Zr<sub>x</sub>Ge<sub>1-x</sub>O<sub>2</sub> films contains about 0.8% Ge and XRD shows peaks of tetragonal phase in Zr<sub>x</sub>Ge<sub>1-x</sub>O<sub>2</sub> films. The MOS structure of Zr<sub>x</sub>Ge<sub>1-x</sub>O<sub>2</sub> films are measurened about 6 voltage using MIM structure. Also, the crystallinity and dielectric constant of Zr<sub>x</sub>Ge<sub>1-x</sub>O<sub>2</sub> are compared with those of the laminated structure of (ZrO<sub>2</sub>)<sub>x</sub>(GeO<sub>2</sub>)<sub>1-x</sub> films that are fabricated using Ge-C<sub>13</sub>H<sub>26</sub>GeN<sub>4</sub> and Zr - CpZr[N(CH<sub>3</sub>)<sub>2</sub>}<sub>3</sub>] precursors.

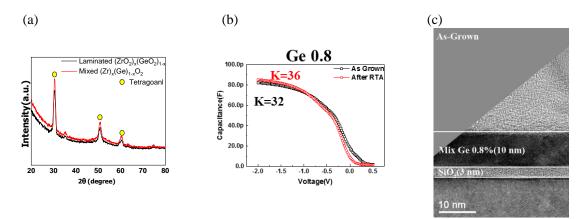



Fig 1. (a) XRD of Zr<sub>x</sub>Ge<sub>1-x</sub>O<sub>2</sub> films and (ZrO<sub>2</sub>)<sub>x</sub>(GeO<sub>2</sub>)<sub>1-x</sub> films.

(b) Capacitance of Zr<sub>x</sub>Ge<sub>1-x</sub>O<sub>2</sub> film

(c) TEM image of Zr<sub>x</sub>Ge<sub>1-x</sub>O<sub>2</sub> film

## Acknowledgments

This work was supported by the SK Hynix program

References

[1] Bo-Eun Park, Yujin Lee1, I-Kwon Oh, Wontae Noh, Satoko Gatineau, and Hyungjun Kim, J mater Sci (2018) 53 : 15237-15245

[2] Jong-Ki An, Nak-Kwan Chung, Jin-Tae Kim, Sung-Ho Hahm, Geunsu Lee, Sung Bo Lee, Taehoon Lee, In-Sung Park, and Ju-Young Yun, MDPI(2018),11,386