[Supplemental Document] Homogenous distribution of dopants in ALD films: tin-doped zinc oxide (ZTO) case study

Triratna Muneshwar,^{a,b} Douglas Barlage,^c Ken Cadien^b

^a Synthergy Inc., DICE 9203 116 St, Edmonton, AB, Canada T6G 1H9

^b Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9

^c Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9 email: <u>muneshwa@ualberta.ca</u>

Fig. 1. Schematic of an ALD process utilizing (a) a super-cycle sequence consisting of $n_1 \times AO$ cycles + $n_2 \times BO$ cycles; and (b) BAOBAO... pulsing. These approaches are shown to give (c) multilayered structure with non-homogeneous dopant distribution, and (d) homogeneous dopant distribution. For tin-doped zinc oxide (ZTO) samples #1 - #3 (each 24 ±1 nm thick), deposited with Sn/Zn/O^{plasma} pulsing sequence at 50 °C substrate temperature, electrical resistivity (ρ^{ele}) and optical bandgap (Eg) are shown in (e) and (f) respectively (ρ^{ele} and Eg for ZnO and SnO₂ are added for reference).