Supplement Materials

Fig. 1. Schematic showing part of our UHV multi-chamber growth/analysis system.
(a) PDA $\mathrm{He} 900^{\circ} \mathrm{C} 10 \mathrm{~s}$
(b) PDA He $900^{\circ} \mathrm{C} 10 \mathrm{~s}$ + PMA He $800^{\circ} \mathrm{C} 5 \mathrm{~s}$ + FGA

Fig. 3. cross-section TEM images of $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \mathrm{~nm})$ / $\mathrm{Y}_{2} \mathrm{O}_{3}(1.5 \mathrm{~nm}) /(\mathrm{In}) \mathrm{GaAs}(001)$ (a) PDA of $900^{\circ} \mathrm{C} 10 \mathrm{~s}$ in He followed by 30 nm ALD-TiN deposition and (b) further PMA of $800^{\circ} \mathrm{C} 5 \mathrm{~s}$ in He and forming gas annealing

Fig. 2. ALD-TiN $/ \mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Y}_{2} \mathrm{O}_{3}$ MOSCAP structure on p (In)GaAs (001) and MOSCAP fabrication process flow

Figure 4. J-E characteristics of $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \mathrm{~nm}) / \mathrm{Y}_{2} \mathrm{O}_{3}(1.5 \mathrm{~nm})$ $/(\operatorname{In}) \mathrm{GaAs}(001)$ after different PMA conditions. All the samples have undergone the same PDA at $850^{\circ} \mathrm{C} 30$ s in He prior to ALD-TiN deposition.

Fig. 5. C-V characteristics of $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Y}_{2} \mathrm{O}_{3} /(\mathrm{In}) \mathrm{GaAs}(001)$ (a) without PMA, (b) with PMA at $900^{\circ} \mathrm{C} 5 \mathrm{~s}$ in He (c) with PMA at $900^{\circ} \mathrm{C} 5 \mathrm{~s}$ in N_{2} (d) with PMA at $900^{\circ} \mathrm{C} 10 \mathrm{~s}$ in N_{2} (e) with PMA at $930^{\circ} \mathrm{C}$ 1s in N_{2} and (f) with PMA at $950^{\circ} \mathrm{C} 1 \mathrm{~s}$ in N_{2}. All the samples have undergone the same PDA at $850^{\circ} \mathrm{C} 30 \mathrm{~s}$ in He prior to ALD-TiN deposition.
[1] Wang et al., IEEE ELECTR DEVICE L. 28, 258 (2007)
[2] Wan et al., J Cryst Growth 477, 179 (2017)
[3] Wan et al., Microelectron Eng. 178, 154 (2017)
LBY and HWW have made equal contributions to this work.

