Enabling strong magnetoelectric 2-2 composites made of AlN films grown by plasma-enhanced ALD on magnetostrictive foils for energy harvesting applications

References

[1] H. Y. Shih et al., Sci. Rep., 39717 (2017).

[2] C. P. Huang, C. H. Wang, C. P. Liu, and K. Y. Lai, Sci. Rep., 7135 (2017).

[3] V. Tarala, M. Ambartsumov, A. Altakhov, V. Martens, and M. Shevchenko, J. Cryst. Growth, 455 (2016), pp. 157-160.
[4] J. Ma, J. Hu, and C.W. Nan, Adv. Mater., 23 (2011), pp. 1062-1087.

Table 1. The PE-ALD grown conditions of synthesized samples using trimethylaluminum (TMA) precursor associated with $N_2/H_2/Ar$.

Samples	Growth	Purging	Thickness
	temperature (°C)	time (s)	(nm)
A1	180	5	600
A2	250	10	120
A3	250	20	157
A4	250	30	160
A5	250	30	590

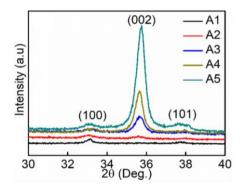


Fig. 1: Grazing incidence X-ray diffraction (GIXRD) data of AlN films A1–A5 grown on (100) silicon with a 150 nm of nickel layer.

Fig. 2: X-ray diffractometry (XPS) survey scans of AlN films grown on (100) silicon substrates after surface cleaning by Ar+ sputtering.

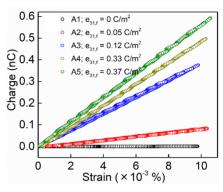


Fig. 3: Four-point bending measurement of generated charges under strain on AlN films on (100) silicon substrates coated by a 150 nm nickel layer as a bottom electrode and 100 nm of aluminum as top electrodes.

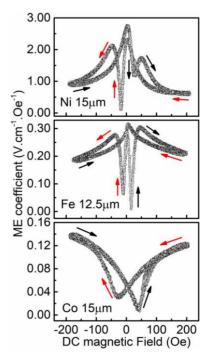


Fig. 4: Magnetoelectric coefficient of the 590nm-thick AlN film (A5) on 15µm-thick nickel (top), 12.5µm-thick iron (middle), 15µm-thick cobalt (bottom) foils. The black and red arrows describe the forward ($-H_{dc}$ to H_{dc}) and backward (H_{dc} to $-H_{dc}$) bias magnetization processes, respectively.