Conformality in aluminum oxide ALD process analyzed using the 3rd-generation silicon-based lateral high-aspect-ratio test structures

Jihong Yim,^{§,x} Oili M. E. Ylivaara,^{†,x} Markku Ylilammi,[‡] Virpi Korpelainen,[†] Eero Haimi,[§] Emma Verkama,[§] Mikko Utriainen,[†] and Riikka L. Puurunen^{*,§,†}

§ Aalto University School of Chemical Engineering, Department of Chemical and Metallurgical Engineering, Espoo, Finland

[†] VTT Technical Research Centre of Finland, Finland

[‡]Espoo, Finland

Figure 1. (a) As-measured saturation profiles, b) scaled saturation profiles, and (c) normalized saturation profiles of ALD Al_2O_3 films made in 500 cycles on PillarHall-3 with different channel heights (100, 500, and 2000 nm). d) As-measured profiles, (e) scaled saturation profiles, and (f) normalized saturation profiles of ALD Al_2O_3 films made in different ALD cycles on the test structure with the nominal channel height of 500 nm. TMA-water-TMA-water sequence of (0.1-4.0-0.1-4.0) s used at 300 °C of ALD temperature.

Figure 2. The thicknesses of Al_2O_3 ALD film grown at 300 °C using (a) different TMA pulse times and (b) purge times in PillarHall-3 with the nominal channel height of 500 nm were measure by reflectometer with the spot size of ca. 5 μ m. ALD cycles of 500 used.