

Figure 1. (a) Polymeric hexatin(II)-di- μ_3 -oxyoctakis(μ -trifluoroacetate) [Sn₆O₂(tfa)₈] and (b) tin(IV) tetrakis(μ -trifluoroacetate) [Sn(tfa)₄] depolymerize into small volatile subunits tin(II) trifluoroacetate [Sn(tfa)₂] and ditin(II) bis(μ -trifluoroacetate) [Sn₂O(tfa)₂], and monomeric tin(IV) tetrakis(κ_2 -trifluoroacetate), respectively. (c) Sn₆O₂(tfa)₈ shows self-limiting behaviour at 400 °C with water then air to deposit FTO. (d) Clausius-Clapeyron relationships for Sn₆O₂(tfa)₈ (green circles), Sn(tfa)₄ (blue triangles), and their acetate cousins tin(II) acetate [Sn(OAc)₂] and tin(IV) acetate [Sn(OAc)₄] with heats of vaporization listed in kJ mol⁻¹. (e, f) Thermogravimetric analysis (TGA) and stress test results (inset) for trifluoroacetates and acetates.