Growth, electronic, and magnetic properties of half-Heusler CoTi_{1-x}Fe_xSb

Supplemental Figures

FIG. 1 (a) SQUID magnetic hysteresis curves of 15 nm thick CoTi_{1-x}Fe_xSb films for x=0.1, 0.2, 0.3, 0.5, and 1 at 5 K. (b) Magnetic moment per formula unit dependence on Fe concentration. Black solid circles and red open squares are data points for CoTi_{1-x}Fe_xSb and Co₁₋ _xFe_xTiSb films respectively. Solid grey, dashed black, and dashed red lines correspond to 4 μ B/Fe atom, linear fit to the CoTi_{1-x}Fe_xSb data, and linear fit to the Co_{1-x}Fe_xTiSb data respectively.

FIG 2. Magnetization hysteresis loops for (a) CoTi_{0.7}Fe_{0.3}Sb and (b) CoTi_{0.5}Fe_{0.5}Sb with the applied magnetic field along different crystallographic directions. [110] and [100] are in-plane directions while [001] is out-of-plane. The insets show the temperature dependence for 5-400 K of the magnetic moment with 100 Oe applied field.

FIG 3 Temperature dependent longitudinal sheet resistance measurements for 15 nm thick $CoTi_{1-x}Fe_xSb$ films x=0, 0.2, 0.3, 0.5, and 1.

FIG 4. Longitudinal magnetoresistance (MR) curves for (a) CoTi_{0.7}Fe_{0.3}Sb and (b) CoTi_{0.5}Fe_{0.5}Sb with the applied magnetic field out of plane for 5, 10, 25, 100, and 300 K. The MR is defined as (Rxx_H-Rxx₀)/R_{xx0} where Rxx_H and Rxx₀ are the longitudinal resistances measured at external magnetic field and zero magnetic field respectively.