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8:20am NS+AM+AS+MN+PC+PS+SS+TR-FrM-1 Using Self-Assembly to 
Engineer Electronic Properties in 1D and 2D Molecular Nanostructures, 
Michael F. Crommie, University of California at Berkeley Physics Dept.
 INVITED 

Control of chemical reactions at surfaces has created new opportunities for 
on-surface synthesis of low-dimensional molecular nanostructures. By 

designing precursor molecules it is possible to engineer new bottom-up 
structures with atomic precision and predetermined electronic properties. 
We have used this technique to confirm recent predictions that quasi-1D 
graphene nanoribbons (GNRs) have well-defined electronic topology. This 

means that when “topologically non-trivial” GNRs are fused to 
“topologically trivial” GNRs then a singly-occupied, topologically-protected 
interface state occurs at the boundary between them. This has allowed us 

to engineer new GNRs with unique electronic structure. We have also 
engineered molecular precursors to control the behavior of 2D polymers. 

By tuning the coupling reaction between monomers it is possible to create 
2D covalent organic frameworks (COFs) that exhibit novel electronic 

superlattice behavior. 

9:00am NS+AM+AS+MN+PC+PS+SS+TR-FrM-3 Chemical and Electronic 
Structure of Aniline Films on Silica Surfaces, Christopher Goodwin, 
University of Delaware; A Maynes, Virginia Polytechnic Institute and State 
University; Z Voras, University of Delaware; S Tenney, Center for Functional 
Nanomaterials Brookhaven National Laboratory; T Beebe, University of 
Delaware 

The use of silica as a substrate for polyaniline is highly appealing since silica 
is a common component in photovoltaics. To this end we have developed a 

vacuum technique for the deposition and functionalization of silica with 
aniline, without the need for wet chemistry. To study the chemistry of the 

reaction, X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary 
Ion Mass Spectroscopy (TOF-SIMS), and Atomic Force Microscopy (AFM), 

among other techniques, have been used. To determine the electronic 
structure if the resulting films, scanning tunneling microscopy and 

evaluation of valance band data collected by XPS was performed. By 
controlling the temperature of the gas-phase reaction, two states of aniline 
were found to exist on the silica surface. Our interest is in determining how 

the two states affect the electronic band structure of the surface. 

9:20am NS+AM+AS+MN+PC+PS+SS+TR-FrM-4 Electric Field Driven 
Chemical Reaction of Individual Molecular Subunits by Scanning 
Tunneling Microscopy, Tomasz Michnowicz, Max Planck Institute for Solid 
State Research, Germany, Deutschland; B Borca, Max Planck Institute for 
Solid State Research, Germany; R Pétuya, Donostia International Physics 
Centre, Spain; M Pristl, R Gutzler, V Schendel, I Pentegov, U Kraft, H Klauk, 
Max Planck Institute for Solid State Research, Germany; P Wahl, University 
of St Andrews, UK; A Arnau, Donostia International Physics Centre, Spain; U 
Schlickum, K Kern, Max Planck Institute for Solid State Research, Germany 

Understanding of elementary steps and control in chemical reactions on 
the atomic scale might improve significantly their efficiency and 
applicability. Scanning tunneling microscopy (STM) allows both 
investigating and stimulating chemical reactions of individual organic 
subunits, for example via the tunneling current, electric field or a 
mechanical interaction. Here we present a study of an STM stimulated 
desulfurization process of the thiophene functional group embedded in a 
tetracenothiophene (TCT) molecule on a Cu(111) surface. Precise 
positioning and applying stimuli with the STM tip apex allows 
determination of a two-step process responsible for this chemical reaction. 
High resolution STM images, supported by the DFT calculations, help us to 
correlate the first reaction step to the breaking of one the carbon-sulfur 
bonds and the second to the breaking of the second carbon-sulfur bond. 
The latter reaction also results in a significant increase of the bond strength 
of the broken thiophene part to Cu surface atoms. The chemical reaction is 
triggered by positioning the tip apex above the thiophene part and 
applying a threshold voltage that depends linearly on the tip-molecule 
distance. This linear dependence is a hallmark of an electric field driven 
process. In addition, conduction measurements through single TCT 
molecules before and after the reaction have been performed. Compared 

to the intact molecule we observed a 50% increase of conductance after 
the chemical reaction, which is in agreement with the finding of a much 
stronger bond formation between the molecule and Cu surface atoms. 

9:40am NS+AM+AS+MN+PC+PS+SS+TR-FrM-5 Characterising Conjugated 
Polymers for Organic Electronics by High-resolution Scanning Probe 
Microscopy, Giovanni Costantini, University of Warwick, UK 

The structure of a conjugated polymer and its solid-state assembly are 
without a doubt the most important parameters determining its properties 
and performance in (opto)-electronic devices. A huge amount of research 
has been dedicated to tuning and understanding these parameters and 
their implications in the basic photophysics and charge transporting 
behaviour. The lack of reliable high-resolution analytical techniques 
constitutes however a major limitation, as it hampers a better 
understanding of both the polymerisation process and the formation of the 
functional thin films used in devices. 

Here, by combining vacuum electrospray deposition and high-resolution 
scanning tunnelling microscopy (STM) we demonstrate the ability of 
imaging conjugated polymers with unprecedented detail, thereby 
unravelling structural and self-assembly characteristics that have so far 
been impossible to determine. 

Applying this novel technique to prototypical DPP- and thiophenes-
containing polymers, we show that sub-molecular resolution STM images 
allow us to precisely identify the monomer units and the solubilising alkyl 
side-chains in individual polymer strands. Based on this, it becomes 
possible to determine the molecular number distribution of the polymer by 
simply counting the repeat units. More importantly, we demonstrate that 
we can precisely determine the nature, locate the position, and ascertain 
the number of defects in the polymer backbone. This unique insight into 
the structure of conjugated polymers is not attainable by any other existing 
analytical technique and represents a fundamental contribution to the 
long-discussed issue of defects as a possible source of trap sites. 
Furthermore, the analysis of our high-resolution images, also reveals that 
the frequently assumed all-trans-conformation of the monomers in the 
polymer backbone is actually not observed, while demonstrating that the 
main driver for backbone conformation and hence polymer microstructure 
is the maximization of alkyl side-chain interdigitation. 

10:00am NS+AM+AS+MN+PC+PS+SS+TR-FrM-6 Probing Electrical 
Degradation of Lithium Ion Battery Electrodes with Nanoscale Resolution, 
Seong Heon Kim, Samsung Advanced Institute of Technology, Republic of 
Korea; S Park, H Jung, Samsung Advanced Institue of Technology, Republic 
of Korea 

The high performance of lithium-ion batteries (LIBs) is in increasing 
demand for a variety of applications in rapidly growing energy-related 

fields, including electric vehicles. To develop high-performance LIBs, it is 
necessary to thoroughly understand the degradation mechanism of LIB 

electrodes. The investigation of the electrical conductivity evolution during 
cycling can lead to a better understanding of the degradation mechanism in 

cathode and anode materials for Li-ion batteries. Here, we probed the 
electrical degradation of LIB electrodes with nanoscale resolution via 

quantitative and comparative scanning spreading resistance microscopy 
(SSRM). First, the electrical degradation of LiNi0.8Co0.15Al0.05O2 (NCA) 

particles which are representative LIB cathode materials was studied [1]. 
After 300 charge/discharge cycles, stepwise-increasing resistance 

distributions toward the centers of the secondary particles were observed. 
These distributions correspond to the degenerated granular structures of 
the secondary particles caused by the formation of micro-cracks. Second, 
the electrical degradation of LIB anodes, the blended Si-C composites with 

graphite (Gr) particles, was investigated using SSRM [2]. From the SSRM 
measurements, it was obviously demonstrated that the electrical 

conductivity of the Si-C composite particles is considerably degraded by 
300 cycles of charging and discharging, although the Gr particles maintain 

their conductivity. Our approach using SSRM techniques can be a good tool 
to study the electrical properties of various LIB electrode materials with 

nanoscale resolution. 

[1] S.Y. Park, W.J. Baek, S.Y. Lee, J.A. Seo, Y.-S. Kang, M. Koh, S.H. Kim, 
Probing electrical degradation of cathode materials for lithium-ion 
batteries with nanoscale resolution, Nano Energy 49 (2018) 1–6. 

[2] S.H. Kim, Y.S. Kim, W.J. Baek, S. Heo, D.-J. Yun, S. Han, H. Jung, 
Nanoscale electrical degradation of silicon-carbon composite anode 
materials for lithium-ion batteries, Submitted. 
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