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2:20pm TF+AS+EL+EM+NS+PS+SS-ThA-1 Ultraflexible Organic Electronics 
for Bio-medical Applications, Tomoyuki Yokota, T Someya, The University 
of Tokyo, Japan INVITED 

Recently, flexible electronics has much attracted to realize bio medical 
application for their flexibility and conformability [1-3]. To improve these 
characteristics, reducing the thickness of the device is very effective [4]. 
We have developed ultra-flexible and lightweight organic electronics and 
photonics devices with few micron substrates. We fabricated the 2-V 
operational organic transistor and circuits which has very thin gate 
dielectric layers. The gate dielectrics were composed of thin aluminium 
oxide layer and self-assembled monolayers (SAMs). Due to the very thin 
substrate and neutral position, our device shows the highly flexibility and 
conformability. The device doesn’t be broken after crumpling. 

And also we fabricated highly efficient, ultra-flexible, air-stable, three-
color, polymer light-emitting diodes (PLEDs) have been manufactured on 
one-micrometer-thick parylene substrates. The total thickness of the 
devices, including the substrate and encapsulation layer, is only three 
micrometers, which is one order of magnitude thinner than the epidermal 
layer of the human skin. The PLEDs are directly laminated on the surface of 
skin and are used as indicators/displays owing to their amazing 
conformability as their superthin characteristics. Three-color PLEDs exhibit 
a high external quantum efficiency (EQE) (12, 14, and 6% for red, green and 
blue, respectively) and large luminescence (over 10,000 candelas per 
square meter at 10 V). The PLEDs are integrated with organic 
photodetectors and are used as pulse oximeter. 
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3:00pm TF+AS+EL+EM+NS+PS+SS-ThA-3 Molecular Surface Chemistry for 
Improved Interfaces in Organic Electronics, Jacob W. Ciszek, Loyola 
University Chicago 

Organic optoelectronic devices (OLED, OFETs, etc.) contain at least one, if 
not multiple instances of overlayers deposited onto organic 

semiconductors. The generated interface is inherently flawed with issues 
such as non-ohmic contact, overlayer delamination, or deposition induced 

damage arising. Traditionally, this is addressed by physical vapor deposition 
of yet another layer or by reengineering the materials in the device stack. 

In contrast, a reaction based approach allows for a wider range of function 
to be installed via molecular components in an organized and oriented 
manner, all while take advantage the inherent reactivity of the organic 

molecules which comprise the semiconducting layer. We have developed 
this approach via a “click-like” Diels-Alder chemistry whereby prototypical 

acene films (tetracene or pentacene) can be appended with a variety of 
small molecules to form an interfacial layer only ~5 Å thick. This chemistry 
is then applied towards improving the metal on semiconductor contact. As 

a demonstration of principle, Diels-Alder chemistry is utilized to form 
covalent bonds linking the organic semiconductor with a deposited metal 

contact thereby eliminating the poor adhesion present in this system. 
Application of the chemistry towards contact potential shifts is presented, 

while work towards sensing applications concludes the talk. 

3:20pm TF+AS+EL+EM+NS+PS+SS-ThA-4 Investigation of Low 
Temperature ALD-deposited SnO2 Films Stability in a Microfabrication 
Environment, Tony Maindron, S Sandrez, N Vaxelaire, CEA/LETI-University 
Grenoble Alpes, France 

For applications such as displays (LCD, OLED) or solar cells, it is mandatory 
to use Transparent Conductive Oxides (TCOs) so as to allow light to extract 
out of the circuit or for light harvesting, respectively. In display technology, 
TCOs are also studied so as to replace the silicon technology developed to 
make the semiconducting channel in thin-film transistors. The mainstream 
TCO today is indium tin oxide (ITO), (90% indium oxide and 10% tin oxide). 
It has the advantage of having a high conductivity and a low surface 

resistivity, of the order of 10 ohm/square, while having a transmittance 
greater than 85% over the entire visible spectrum. However, it has several 
drawbacks, including the scarcity of indium and the high cost associated to 
its extraction process, which has prompted the scientific community to 
look for alternative TCOs. Among all TCOs, ZnO has been widely studied as 
a low cost single-metal oxide alternative material to ITO, as well as its 
multi-metal oxide derivatives using a dedicated metal dopant to control its 
electrical conductivity, as for instance with Al (ZnO:Al or AZO). One issue 
however with ZnO films lays in their relative chemical stability to water. It 
has been shown that films of ZnO or AZO change their physical properties 
when exposed to moisture: electrical conductivity decreases, roughness 
can increase, and optical characteristics are modified. By extension, when 
ZnO-based TCOs have to be finely patterned by photolithography, their 
high sensitivity to water-based solutions can be a severe issue. In our 
laboratory, we have noticed that ZnO and AZO films made by ALD at 150 °C 
typically are not stable in a microfabrication process: a large decrease (~ 20 
%) of AZO thickness after the development step of photoresists used to 
pattern the TCO film has been noticed. One way to stabilize ZnO-based 
compounds is to anneal the films at high temperatures. However for some 
dedicated applications that use fragile substrates (plastic films for flexible 
organic electronics for instance), such post annealing processes at high 
temperature (typ. > 150 °C) cannot be applied. An alternative is to explore 
alternative materials to AZO: we found out that SnO2 ALD (150 °C) shows 
very promising features regarding the stability under a microfabrication 
environment, while having good electrical and optical characteristics. 

4:00pm TF+AS+EL+EM+NS+PS+SS-ThA-6 Dopant Distribution in Atomic 
Layer Deposited ZnO:Al and In2O3:H Films Studied by Atom Probe 
Tomography and Transmission Electron Microscopy, Y Wu, B Macco, 
Eindhoven University of Technology, The Netherlands, Netherlands; D 
Giddings, T Prosa, D Larson, CAMECA Instruments Inc.; S Kölling, P 
Koenraad, Eindhoven University of Technology, The Netherlands; F 
Roozeboom, Erwin Kessels, Eindhoven University of Technology, The 
Netherlands, Netherlands; M Verheijen, Eindhoven University of 
Technology, The Netherlands 

Transparent conductive oxides (TCOs) are ubiquitous in many of today’s 
electronic devices, including solar cells. Atomic layer deposition (ALD) is a 
promising method to prepare high quality TCO films due to its well-known 
virtues – i.e., precise growth control, excellent conformality and uniformity 
– combined with its damage-free character. Here we report on two types 

of TCO films that we have studied by a combination of atom probe 
tomography (APT) and high-resolution transmission electron microscopy 

(TEM). The aim was to get more insight into how the dopants are 
distributed in the films. 

The first study was carried out on ZnO:Al prepared by alternating cycles of 
Zn(C2H5)2 and H2O with cycles of Al(CH3)3 and H2O in a supercycle fashion at 

250 ⁰C. For this material it is known that the maximum conductivity 
achievable is limited by the low doping efficiency of Al. To better 

understand the limiting factors for the doping efficiency, the 3-dimensional 
distribution of Al atoms in the ZnO host material matrix has been examined 
at the atomic scale by the aforementioned techniques [1]. Although the Al 
distribution in ZnO films prepared by so-called “ALD supercycles” is often 
presented as atomically flat δ-doped layers, in reality a broadening of the 

Al-dopant layers was observed with a full-width-half-maximum of ~2 nm. In 
addition, an enrichment of the Al at grain boundaries was seen. 

The second study involved In2O3:H prepared by InCp and a mixture of O2 
and H2O at 100 ⁰C. This material provides a record optoelectronic quality 

after post-deposition crystallization of the films at 200 ⁰C. Since both the H 
dopant incorporation and the film microstructure play a key role in 

determining the optoelectronic properties, both the crystal growth and the 
incorporation of H during this ALD process were studied [2]. TEM studies 
show that an amorphous-to-crystalline phase transition o ccurs in the low 

temperature regime (100-150 °C), which is accompanied by a strong 
decrease in carrier density and an increase in carrier mobility. Isotope 
studies using APT on films grown with D2O show that the incorporated 
hydrogen mainly originates from the co-reactant and not from the InCp 

precursor. In addition, it was established that the incorporation of 
hydrogen decreased from ~4 at. % for amorphous films to ~2 at. % after the 

transition to crystalline films. 

[1] Y. Wu, A. Giddings, M.A. Verheijen, B. Macco, T.J. Prosa, D.J. Larson, F. 
Roozeboom, and W.M.M. Kessels, Chem. Mater. 30, 1209 (2018). 
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Koenraad, W.M.M. Kessels, and F. Roozeboom, ACS Appl. Mater. 

Interfaces, 9, 592 (2017). 
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4:20pm TF+AS+EL+EM+NS+PS+SS-ThA-7 Roll-to-Roll Processable OTFT 
Sensors and Amplifier, Kai Zhang, University of Oxford, Department of 
Materials, UK; C Chen, B Choubey, H Assender, University of Oxford, UK 

The high flexibility and relatively low cost of organic electronics are 
gradually providing more possibility for their application. Compared with 
conventional silicon based electronics, organic electronics have relatively 
short lifecycles and processor speed, but they are more promising in the 

market of wearable and flexible devices, for example, wearable health care 
devices, simple memory devices and flexible displays. In recent years, some 

flexible and wearable sensors have been developed, e.g. skin-touching 
sensors embedded in a sports suit can detect the change of heart rate, 
blood pressure, ion concentration of perspiration, or infrared radiation 

from the human body.  

In most sensors based on organic thin film transistors (OTFT) made to date, 
the semiconductors are employed directly to detect analytes. However, (1) 
the lifecycles of this design is short due to the low stability of organic 
semiconductors; and (2) any modification for selectivity needs to be 
compatible with the semiconductor. 

In this paper, we present sensors based upon an extended floating gate in 
order to separate the sensory area from the semiconductor. Transistors are 
manufactured, using our roll-to-roll vacuum webcoating facility, using a 
high-throughput all evaporation process (Ding et al., 2016, Taylor et al., 
2015). We have demonstrated the principle of operation of a floating gate 
sensor integrated with the vacuum-deposited OTFT, by means of a simple 
strain sensor, using ferroelectric PVDF on the extended floating gate to 
directly act as a sensory material. To amplify the sensor signal further, a 
series of current mirrors and differential amplifiers have been designed 
based on the properties of single OTFTs. The combination of organic 
amplifier and OTFT sensor will be helpful to transduce sensing signal to a 
suitable level for wireless signal reading from flexible devices. 

Reference:  

DING, Z., ABBAS, G. A. W., ASSENDER, H. E., MORRISON, J. J., YEATES, S. G., 
PATCHETT, E. R. & TAYLOR, D. M. 2016. Vacuum production of OTFTs by 
vapour jet deposition of dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene 

(DNTT) on a lauryl acrylate functionalised dielectric surface. Organic 
Electronics, 31, 90-97. 

TAYLOR, D. M., PATCHETT, E. R., WILLIAMS, A., DING, Z., ASSENDER, H. E., 
MORRISON, J. J. & YEATES, S. G. 2015. Fabrication and simulation of organic 

transistors and functional circuits. Chemical Physics, 456, 85-92. 

4:40pm TF+AS+EL+EM+NS+PS+SS-ThA-8 Functionalization of Indium 
Gallium Zinc Oxide Surfaces for Transparent Biosensors, X Du, S John, J 
Bergevin, Gregory Herman, Oregon State University 

Amorphous indium gallium zinc oxide (IGZO) field effect transistors (FETs) 
are a promising technology for a wide range of electronic applications 
including implantable and wearable biosensors. We have recently 
evaluated the functionalization of IGZO back channel surfaces with a range 
of self-assembled monolayers (SAM) to precisely control surface chemistry 
and improve stability of the IGZO-FETs. The SAMs evaluated include, n-
hexylphosphonic acid (n-HPA), (3,3,4,4,5,5,6,6,6-nonafluorohexyl) 
phosphonic acid (FPA), and (3-aminopropyl) trimethoxysilane (APTMS). A 
comparison of the surface chemistry is made for bare and SAM 
functionalized IGZO back channel surfaces using X-ray photoelectron 
spectroscopy and electronic device measurements in air and phosphate 
buffer solution (PBS). We find significantly improved device stability with 
the SAMs attached to the IGZO back channel surface, both in air and PBS. 
We related this to the reduction of traps at the back channel surface due to 
SAM passivation. To further evaluate the IGZO-FETs as biosensors we have 
immobilized glucose oxidase (GOx) to the APTMS functionalized IGZO back 
channel surface using glutaraldehyde. We find that both the FPA 
functionalized and the GOx immobilized surfaces are effective for the 
detection of glucose in PBS. Furthermore, the GOx immobilized IGZO-FET 
based glucose sensors have excellent selectivity to glucose, and can 
effectively minimize interference from acetaminophen/ascorbic acid. 
Finally, we will discuss fully transparent IGZO-FET based glucose sensors 
that have been fabricated directly on transparent catheters.These results 
suggest that IGZO-FETs may provide a means to integrate fully transparent, 
highly-sensitive sensors into contact lenses. 

5:00pm TF+AS+EL+EM+NS+PS+SS-ThA-9 Large Area Atmospheric Pressure 
Spatial ALD of IZO and IGZO Thin-film Transistors, C Frijters, I Katsouras, A 
Illiberi, G Gelinck, Holst Centre / TNO, Netherlands; Paul Poodt, Holst 
Centre / TNO and SALDtech B.V., Netherlands 

Atmospheric pressure Spatial ALD is able to deliver high deposition rates 
while maintaining the advantages of conventional ALD, such as low defect 
density, high conformality and thickness uniformity. An emerging 
application for Spatial ALD is flat panel (OLED) display manufacturing. 
Examples include oxide semiconductors and dielectric layers for use in thin-
film transistors (TFT’s), and thin-film encapsulation for flexible OLED 
displays. As today’s displays are fabricated on glass plate sizes in the order 
of several square meters, a remaining challenge is the development of 
large-area Spatial ALD deposition technology that is able to combine high 
throughput with uniform performance across very large areas. 

We are developing large area Spatial ALD technology, and as a first step 
between the lab and the display fab, we have installed a large area Spatial 
ALD sheet-to-sheet tool which can handle up to 400x325 mm2 sized 
substrates. With this tool we are able to deposit uniform films across a 
deposition width of 400 mm and thickness non-uniformities of ~ 1%. The 
whole tool is operated under an atmospheric pressure but inert N2 
environment. The tool can be used to deposit a variety of materials using 
both thermal and plasma-enhanced Spatial ALD. 

We will present about the fabrication and performance of 30 cm x 30 cm 
TFT backplanes with InZnOx (IZO) and InGaZnOx (IGZO) oxide 
semiconductors deposited by spatial ALD. The IZO and IGZO films were 
deposited by plasma enhanced Spatial ALD using co-injected In-, Ga- and 
Zn-precursors and an atmospheric pressure N2/O2 plasma. The deposition 
process has been optimized in terms of film composition and electrical 
properties on a lab-scale reactor before being translated to the large area 
spatial ALD rector. We will report on the yield and performance of the 30 
cm x 30 cm TFT backplanes, including electrical properties such as the field 
effect mobility, Von and bias stress stability and compare it with state-of-
the-art sputtered IGZO TFT’s. Finally, the challenges in up-scaling Spatial 
ALD to plate sizes of 1.5 m and beyond will be discussed. 

5:20pm TF+AS+EL+EM+NS+PS+SS-ThA-10 Thin Film Ink-Jet Printing on 
Textiles for Flexible Electronics, Jesse Jur, I Kim, H Shahariar, North 
Carolina State University 

Inkjet printing of thin film flexible electronics on textiles is an emerging 
field of research with advances in wearable technology. In this study we 

describe for the first-time a reliable and conformal inkjet printing process 
of printing particle free reactive silver ink on textile surfaces. Reactive silver 

ink is printed on fibers with eclectic polymers ranging from polyester and 
polyamide, and different structures of textiles such as knitted, woven, and 
nonwoven fabrics. The conductivity and the resolution of the inkjet-printed 

tracks are directly related to the fiber structures in the fabrics. Multiple 
passes of printing layers are needed to confirm the percolation of the 
metal network on porous, uneven surfaces. The conformity and the 

electrical conductivity of the inkjet-printed conductive coating on PET 
textiles are improved by in-situ heat curing the substrate during printing 
and surface modification, for example, by atmospheric oxygen plasma 

treatments. The in-situ heat curing potentially minimizes wicking of the ink 
into the textile structures. We have achieved the minimum sheet 

resistance of 0.2 Ohm/sq on polyester knit fabric, which is comparable to 
the conductive thick-paste used in the screen-printed process, as well as 
other traditional physical and chemical deposition processes on textile 
fabrics/yarns. Additionally, we have constructed textile knit structures 

which changes electric percolation depending on structural deformations 
of the knit loops, providing positive and negative gauge factors upon 

stretching. The printed patterns are post-treated with diluted silicone/UV 
curable aliphatic water-soluble polyurethane coating to improve the 
durability during washing. These findings open up the possibility of 

integrating inkjet printing in the scalable and automated manufacturing 
process for textile electronic applications. 

5:40pm TF+AS+EL+EM+NS+PS+SS-ThA-11 Flexography Oil Patterning for 
In-line Metallization of Aluminium Electrodes onto Polymer Webs: 
Commercial Roll to Roll Manufacturing of Flexible and Wearable 
Electronics, Bryan Stuart, T Cosnahan, A Watt, H Assender, University of 
Oxford, Department of Materials, UK 

Vacuum metallisation of aluminium through shadow masks has been 
commercially used for decades for depositing electrodes on rigid 
semiconductor devices, however recent developments have enabled large 
area, continuous deposition of patterned metallization in the aesthetic 
printing industry and has the potential for electrode interconnects for 
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devices on flexible substrates such as Polyethylene Terephthalate (PET) and 
Polyethylene Naphthalene (PEN). Flexible polymer webs of PET were 
coated (SeeSupplementary Figure) with 50 nm thick, 165 um wide 
aluminium electrodes by commercially compatible manufacturing at roll-
to-roll web speed of 2.4 m min-1 showing tremendous potential for large 
scale manufacturing of wearable electronic devices in transistors, low level 
energy generation (Thermoelectric generators), energy storage (thin film 
batteries) or display technologies (LED displays) [1]. 

The in-line patterning process relies on adaptation of flexography ink 
printing which typically transfers ink to a rubber patterned plate for 
printing images onto polymer webs. The flexibility of the printing plate 
accommodates for irregularities in the surface of the substrate making this 
process desirable for large area manufacturing. Metallization has been 
used to deposit aluminium onto a flexography applied pattern by replacing 
ink with a low vapor pressure oil (e.g. Perfluropolyether, Krytox®). The 
radiative heating of aluminium metallization causes simultaneous 
evaporation of the oil pattern, thereby rapidly forming the desired metal 
pattern onto the un-patterned regions. Currently we are scaling-up the oil 
flexography/metallization process into an industrial-scale roll-to-roll coater 
with potential web widths of 350 mm and roll speeds of 100 m min-1, in 
order to increase web speeds, and to expand the range of materials 
deposited and the functional devices to which they are applied. 

This paper reports on in-line pattern deposition of aluminium and other 
materials as applied to functional devices, for example organic thin film 
transistors and thermoelectric devices. In particular we are able to 
demonstrate how the process can be compatible with other functional 
layers. We will report our studies of electrode precision (shapes/sizes) by 
patterned metallization and our first studies of sputtering with flexography 
patterning. The long term view is integration of this technology along the 
R2R production path for single pass/high speed production of low cost and 
flexible integrated circuits. 

References 

1. Cosnahan, T., A.A. Watt, and H.E. Assender, Modelling of a vacuum 
metallization patterning method for organic electronics. Surface and 

Coatings Technology, 2017. 



Author Index 

Author Index 4 Bold page indicates presenter 

Bold page numbers indicate presenter 
— A — 
Assender, H: TF+AS+EL+EM+NS+PS+SS-ThA-

11, 2; TF+AS+EL+EM+NS+PS+SS-ThA-7, 2 
— B — 
Bergevin, J: TF+AS+EL+EM+NS+PS+SS-ThA-8, 

2 
— C — 
Chen, C: TF+AS+EL+EM+NS+PS+SS-ThA-7, 2 
Choubey, B: TF+AS+EL+EM+NS+PS+SS-ThA-7, 

2 
Ciszek, J: TF+AS+EL+EM+NS+PS+SS-ThA-3, 1 
Cosnahan, T: TF+AS+EL+EM+NS+PS+SS-ThA-

11, 2 
— D — 
Du, X: TF+AS+EL+EM+NS+PS+SS-ThA-8, 2 
— F — 
Frijters, C: TF+AS+EL+EM+NS+PS+SS-ThA-9, 2 
— G — 
Gelinck, G: TF+AS+EL+EM+NS+PS+SS-ThA-9, 

2 
Giddings, D: TF+AS+EL+EM+NS+PS+SS-ThA-6, 

1 
— H — 
Herman, G: TF+AS+EL+EM+NS+PS+SS-ThA-8, 

2 

— I — 
Illiberi, A: TF+AS+EL+EM+NS+PS+SS-ThA-9, 2 
— J — 
John, S: TF+AS+EL+EM+NS+PS+SS-ThA-8, 2 
Jur, J: TF+AS+EL+EM+NS+PS+SS-ThA-10, 2 
— K — 
Katsouras, I: TF+AS+EL+EM+NS+PS+SS-ThA-

9, 2 
Kessels, E: TF+AS+EL+EM+NS+PS+SS-ThA-6, 1 
Kim, I: TF+AS+EL+EM+NS+PS+SS-ThA-10, 2 
Koenraad, P: TF+AS+EL+EM+NS+PS+SS-ThA-

6, 1 
Kölling, S: TF+AS+EL+EM+NS+PS+SS-ThA-6, 1 
— L — 
Larson, D: TF+AS+EL+EM+NS+PS+SS-ThA-6, 1 
— M — 
Macco, B: TF+AS+EL+EM+NS+PS+SS-ThA-6, 1 
Maindron, T: TF+AS+EL+EM+NS+PS+SS-ThA-

4, 1 
— P — 
Poodt, P: TF+AS+EL+EM+NS+PS+SS-ThA-9, 2 
Prosa, T: TF+AS+EL+EM+NS+PS+SS-ThA-6, 1 
— R — 
Roozeboom, F: TF+AS+EL+EM+NS+PS+SS-

ThA-6, 1 

— S — 
Sandrez, S: TF+AS+EL+EM+NS+PS+SS-ThA-4, 

1 
Shahariar, H: TF+AS+EL+EM+NS+PS+SS-ThA-

10, 2 
Someya, T: TF+AS+EL+EM+NS+PS+SS-ThA-1, 

1 
Stuart, B: TF+AS+EL+EM+NS+PS+SS-ThA-11, 

2 
— V — 
Vaxelaire, N: TF+AS+EL+EM+NS+PS+SS-ThA-

4, 1 
Verheijen, M: TF+AS+EL+EM+NS+PS+SS-ThA-

6, 1 
— W — 
Watt, A: TF+AS+EL+EM+NS+PS+SS-ThA-11, 2 
Wu, Y: TF+AS+EL+EM+NS+PS+SS-ThA-6, 1 
— Y — 
Yokota, T: TF+AS+EL+EM+NS+PS+SS-ThA-1, 1 
— Z — 
Zhang, K: TF+AS+EL+EM+NS+PS+SS-ThA-7, 2 

 


