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8:20am TF+EM+MI+MN+OX+PS-MoM-1 A Room-Temperature 
Magnetoelectric Multiferroic made by Thin Film Alchemy, D Schlom, 
Megan Holtz, Cornell University INVITED 

Materials that couple strong ferroelectric and ferromagnetic order hold 
tremendous promise for next-generation memory devices. Meticulous 
engineering has produced novel ferroelectric and multiferroic materials, 
although known single-phase multiferroics remain limited by 
antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling 
between the order parameters, or by having properties that emerge only 
well below room temperature. Here we construct single-phase multiferroic 
materials in which ferroelectricity and strong magnetic ordering are 
coupled near room temperature. Starting with hexagonal LuFeO3—a 
geometric ferroelectric with planar rumpling—we introduce individual 
monolayers of ferrimagnetic LuFe2O4 within the LuFeO3 matrix, that is, 
(LuFeO3)m/(LuFe2O4)1 superlattices. The rumpling of the LuFeO3 drives the 
ferrimagnetic LuFe2O4 into a ferroelectric state, reducing the LuFe2O4 spin 
frustration. This increases the magnetic transition temperature to 281K for 
m=9. Moreover, the ferroelectric order couples to the ferrimagnetism, 
enabling direct electric-field control of magnetism at 200 kelvin. Further, 
charged ferroelectric domain walls align at LuFe2O4 layers, resulting in 
charge transfer which increases the magnetic moment. We are currently 
pursuing higher temperature multiferroics by incorporating cubic spinels 
with high magnetic ordering temperatures, such as CoFe2O4, into the 
LuFeO3 matrix. Our results demonstrate a design methodology for creating 
higher-temperature magnetoelectric multiferroics through epitaxial 
engineering. 

9:00am TF+EM+MI+MN+OX+PS-MoM-3 Magnetic Losses in 
FeGa/NiFe/Al2O3 Laminates for Strain-Mediated Multiferroic Micro-
Antenna Applications, Kevin Fitzell, A Acosta, C Rementer, D Schneider, Z 
Yao, University of California, Los Angeles; C Dong, Northeastern University; 
M Jamer, D Gopman, J Borchers, B Kirby, National Institute of Standards 
and Technology (NIST); N Sun, Northeastern University; Y Wang, G Carman, 
J Chang, University of California, Los Angeles 

The ability to reduce the size of antennae would enable a revolution in 
wearable and implantable electronic devices. Multiferroic antennae, 
composed of individual ferromagnetic and piezoelectric phases, could 
reduce antenna size by up to five orders of magnitude through the efficient 
coupling of magnetization and electric polarization via strain. This strategy 
requires a material with strong magnetoelastic coupling and acceptable 
magnetic losses at high frequency. 

Galfenol (Fe84Ga16 or FeGa) is a promising candidate material due to its 
large magnetostriction (200 µε), large piezomagnetic coefficient (5 
ppm/Oe), and high stiffness (60 GPa), but it is highly lossy in the GHz 
regime. On the other hand, Permalloy (Ni81Fe19 or NiFe) is a soft magnetic 
material that has very low loss in the GHz regime, with a ferromagnetic 
resonance (FMR) linewidth of 10 Oe, but almost no magnetostriction. In 
this work, nanoscale laminates containing alternating layers of FeGa and 
NiFe were fabricated via DC magnetron sputtering to combine the 
complementary properties of the two magnetic phases, resulting in a 
composite material with a small coercive field, narrow FMR linewidth, and 
high permeability (Rementer et al., 2017). Optical magnetostriction 
measurements confirmed that these laminates retain the large saturation 
magnetostriction of FeGa (200 µε) while enhancing the piezomagnetic 
coefficient (7 ppm/Oe), allowing for optimal piezomagnetic actuation at 
substantially reduced magnetic bias fields. Furthermore, multiferroic 
composites incorporating these magnetic laminates were studied via 
polarized neutron reflectometry, demonstrating uniform rotation of the 
individual layers’ magnetization with an applied electric field across 
distances much larger than the exchange length of either material. 

Due to the metallic nature of these FeGa/NiFe multilayer composites, 
however, resulting devices would be inefficient due to the generation of 
eddy currents at high frequency. To mitigate these losses, ultrathin layers 
of Al2O3 were incorporated into the multilayer materials to reduce the 
conductivity and mitigate the generation of eddy currents. The effect of 

Al2O3 thickness, FeGa:NiFe volume ratio, and multilayer architecture on the 
soft magnetic properties was also studied, resulting in a 50% reduction in 
the FMR linewidth. Optimized magnetic laminates were shown to exhibit a 
small coercive field (<20 Oe), narrow ferromagnetic resonance linewidth 
(<50 Oe), and high relative permeability (>500) while maintaining excellent 
magnetoelastic coupling, showing great promise for the use of 
FeGa/NiFe/Al2O3 laminates in strain-mediated micro-scale communications 
systems. 

9:20am TF+EM+MI+MN+OX+PS-MoM-4 Multiferroic Gd-substituted 
HfO2Thin Films, John Hayden, F Scurti, J Schwartz, J Maria, Pennsylvania 
State University 

Modern ferroelectric technologies utilize perovskite structured materials, 
which have limited Si compatibility and modest bandgaps requiring thick 
films to reduce leakage current, hindering their implementation in 
realizable thin film devices. HfO2 has been extensively researched as a gate 
dielectric thin film with excellent Si processing compatibility and has 
recently been found to exhibit ferroelectricity induced by a combination of 
impurity substitution, mechanical confinement by capping, intergranular 
surface area, and film thickness effects. This work investigates the 
microstructural characteristics, the ferroelectric response, and the 
potential for concomitant magnetic properties in sputtered Gd:HfO2 thin 
films. 

Gd-substituted HfO2 thin films are a promising candidate as a multiferroic 
material, due to the presence of the magnetically active Gd3+ ion. Though 
substituting with Gd is known to induce ferroelectricity in HfO2, the 
magnetic properties of Gd:HfO2 have yet to be studied in depth. In this 
study, Gd:HfO2 films are fabricated on TaN substrates by radio frequency 
sputtering of a composite Gd metal and HfO2 oxide target in a mixed Ar and 
O2 atmosphere. Grazing incidence x-ray diffraction is used to evaluate the 
suppression of the paraelectric monoclinic phase and stabilization of the 
ferroelectric orthorhombic phase. Electrical polarization measurements are 
used to study the room temperature spontaneous polarization in 
TaN/Gd:HfO2/TaN metal-insulator-metal capacitors. Surface morphology of 
the films is characterized using atomic force microscopy, while magnetic 
properties are measured by variable temperature magnetometry. Initial 
magnetometry shows that Gd-substituted HfO2 exhibits remnant 
magnetization at room temperature. 

The scalability and simplicity of Gd:HfO2, if it exhibits magnetoelectric 
coupling, make it an attractive model system for future developments in 
thin film multiferroics, having potential impacts for spintronics and other 
magnetoelectronic devices. 

9:40am TF+EM+MI+MN+OX+PS-MoM-5 Epitaxial Growth of 
Antiferromagnetic NiO Films by Off-axis Sputtering for Spintronic Devices, 
A Churikova, G Beach, Massachusetts Institute of Technology; Larry 
Scipioni, A Shepard, J Greer, T Newhouse-Illige, PVD Products, Inc. 

High-quality epitaxial growth of antiferromagnetic thin films is essential for 
future spintronic devices, as it allows small antiferromagnetic domain sizes 
and efficient electrical manipulation of domain walls via reading and 
writing currents. Antiferromagnetic materials are candidates for ultrafast 
operation due to THz antiferromagnetic spin dynamics, high packing 
densities due to the absence of stray magnetic fields, and stability due to 
insensitivity to external magnetic fields [1,2]. Meanwhile, the long spin 
diffusion lengths [3] and theoretically predicted superfluid transport of spin 
currents [4] in antiferromagnetic insulators are crucial for low-power 
device operation. The electrical control of magnetic spin textures has been 
thus far realized in epitaxially grown NiO on MgO substrates [5] and 
ferrimagnetic maghemite (γ−Fe2O3) and magnetite (Fe3O4) thin films [6]. 

We report the preparation of antiferromagnetic NiO thin films with (111) 
orientation on c-plane sapphire (1000) substrates by off-axis RF magnetron 
sputtering from a NiO target. The off-axis angle was 45°, and the sputtering 
pressure was 5 mTorr. Samples were grown with thicknesses ranging from 
5 – 50 nm, and with growth temperatures from room temperature to 
600°C, to determine optimum conditions. Structural characterization by x-
ray diffraction demonstrates a high degree of epitaxy across a range of 
deposition temperatures and thicknesses. The deposition temperature and 
thickness dependence of epitaxial quality is investigated, with a 
characterization of the strain state, mosaicity, and crystallographic 
relationship between substrate and film. Evidence for antiferromagnetic 
order forming domains in NiO is provided via magnetic characterization of 
the films. Our results are essential for the optimization of the fabrication of 
high quality epitaxial antiferromagnetic films for practical spintronics 
devices. 
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10:00am TF+EM+MI+MN+OX+PS-MoM-6 Structural and Magnetic 
Properties of CoPd Alloys for Non-Volatile Memory Applications, S Gupta, 
J Abugri, B Clark, University of Alabama; P Komninou, Aristotle University of 
Thessaloniki; Sujan Budhathoki, A Hauser, P Visscher, University of 
Alabama 

A study of perpendicular magnetic anisotropy (PMA) CoPd alloys is 
presented as a simple means of pinning MgO-based perpendicular 
magnetic tunnel junctions (pMTJs) for spin transfer torque magnetic tunnel 
junction (STT-MRAM) applications. A compositional study of the CoxPd100-x 
alloys at 50 nm thickness showed that the maximum coercivity and 
anisotropy was found for Co25Pd75. Perpendicular magnetic tunnel junction 
stacks were deposited using different compositions of CoPd. Current-in-
plane tunneling measurements indicated that the TMR values roughly 
correlated with the coercivity and anisotropy of the single layers. A 
thickness study indicated that the alloy was fully perpendicular for 
thicknesses as low as 20 nm. Various seed layers were employed to 
optimize the coercivity of the Co25Pd75 layer. Magnetometry, X-ray 
diffraction (XRD), scanning electron microscopy (SEM) and high resolution 
transmission electron microscopy studies were carried out to relate the 
magnetic and structural properties of these layers. These studies showed 
that the highest coercivity Co25Pd75 was achieved on a seed layer of Ta/Pd 
which helped to crystallize the CoPd layer in an fcc (111) orientation. 

10:40am TF+EM+MI+MN+OX+PS-MoM-8 Size Effects of the 
Electromechanical Response in Ferroic Thin Films: Phase Transitions to 
the Rescue, Nazanin Bassiri-Gharb, Georgia Institute of Technology
 INVITED 

Silicon-integrated ferroelectric thin films have been leveraged over the last 
two decades for fabrication of high performance piezoelectric 
microelectromechanical systems (MEMS) devices. Ceramic Pb(ZrxTi1- 

x)O3(PZT) thin films have been often the material of choice, due to their 
large electromechanical response, especially at morphotropic phase 
boundary compositions (MPB at x ~0.52), where co-existence of multiple 
crystallographic distortions can enhance extrinsic electromechanical 
contributions. However, ferroelectric thin films suffer from extrinsic size 
effects that lead to deteriorated piezoelectric properties in thin and ultra-
thin films. Here we report on different strategies for processing of thin 
films with enhanced piezoelectric response with respect to traditionally 
processed PZT thin films. 

Specifically, we will discuss preparation of superlattice-like polycrystalline 
PZT thin films through chemical solution depositions, polycrystalline 
relaxor-ferroelectric thin films (PMN-PT), and finally alternative non-
ferroelectric compositions, where the electric field-induced phase 
transitions can result in substantial enhancement in thinner films, even 
where traditional 

11:20am TF+EM+MI+MN+OX+PS-MoM-10 Ferroelectrics Meet Ionics in 
the Land of van der Waals, S Neumayer, Center for Nanophase Materials 
Sciences, Oak Ridge National Laboratory; J Brehm, Vanderbilt University; M 
McGuire, Oak Ridge National Laboratory; M Susner, Air Force Research 
Laboratory; E Eliseev, National Academy of Sciences of Ukraine; S Jesse, S 
Kalinin, Center for Nanophase Materials Sciences, Oak Ridge National 
Laboratory; A Morozovska, National Academy of Sciences of Ukraine; S 
Pantelides, Vanderbilt University; N Balke, Petro Maksymovych, Center for 
Nanophase Materials Sciences, Oak Ridge National Laboratory 

Van der Waals crystals of metal thiophosphates can be thought of as 
derivatives of transition metal dichalcogenides where 1/3 of metal atoms is 
replaced with diphosphorous, thereby stabilizing the remaining 2/3 of 
metal ions in low oxidation states.1 Consequently, thiophosphates enable 
ultrathin magnetic, ferroelectric and Mott insulating materials, in q2D 

materials while also providing new opportunities for multifunctional 
interfaces . 

Of particular interest is CuInP2S6, where ferroelectricity emerges out of 
ionically conducting state .2,3 In this work, we discuss unusual and perhaps 
anomalous properties observed in CuInP2S6 in both states. 

CuInP2S6 exhibits giant negative electrostriction (Q33 = -3.2 m4/C2), which 
leads to large piezoelectric coefficients despite small polarization values 
and increase of Tc with applied pressure. It's the only material other than 
polymer PVDF for which such behavior is experimentally confirmed. 
Density functional theory reveals that the reason for negative 
electrostriction is a slight movement of Cu ions into the van der Waals gap 
due to anharmonicity of the potential well.4 Moreover, under high 
compressive strain, Cu starts to form interlayer bonds with sulfur across 
the van der Waals gap, leading to an additional phase of high polarization. 
Consequently, the potential distribution exhibits 4 instead of the usual two 
minima - a quadruple well, that is precisely tunable by strain. In the 
paraelectric state above ~70°C, Cu ion mobility drastically increases. 
Intriguingly, Cu can be reversibly extracted out of the lattice without visible 
damage. Finally, the selenide sibling CuInP2Se6, exhibits a lower transition 
temperature and propensity toward antiferroelectric ordering under the 
effect of depolarizing fields. In this material, we have for the first time 
observed piezoelectric response confined to domain walls (opposite to 
ferroelectrics), fulfilling the long-standing predictions for polar 
antiferroelectric domain walls and providing a new model system for 
emergent properties of topological defects in ferroic order parameter 
fields. 

Research sponsored by Division of Materials Science and Engineering, Basic 
Energy Sciences, US Department of Energy. Microscopy was conducted at 
the Center for Nanophase Materials Sciences, which is a DOE Office of 
Science User Facility. 
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4Brehm et al, in review 

11:40am TF+EM+MI+MN+OX+PS-MoM-11 Adsorption-controlled Epitaxial 
Growth of the Hyperferroelectric Candidate LiZnSb on GaSb (111), D Du, P 
Strohbeen, University of Wisconsin - Madison; H Paik, Cornell University; C 
Zhang, P Voyles, Jason Kawasaki, University of Wisconsin - Madison 

A major challenge for ferroelectric devices is the depolarizing field, which 
competes with and often destroys long-range polar order in the limit of 
ultrathin films. Recent theoretical predictions suggest a new class of 
materials, termed hyperferroelectics [1], should be immune to the 
depolarizing field and enable ferroelectric devices down to the monolayer 
limit. Here we demonstrate the epitaxial growth of hexagonal LiZnSb, one 
of the hyperferroelectric candidate materials, on GaSb (111) substrates. 
Due to the high volatility of all three atomic species, we find that 
stoichiometric films can be grown in a thermodynamically adsorption-
controlled window, using an excess zinc flux. Outstanding challenges 
remain in controlling the point defects of LiZnSb and in controlling 
polytypism. While the films primarily grow in a hexagonal “stuffed 
wurtzite” phase (space group P63mc), which is has the desired polar 
structure, there exists a competing cubic “stuffed zincblende” polymorph 
that is nonopolar (F-43m). We will discuss our strategy towards controlling 
defects and polytypism in LiZnSb, which is based in large part on the 
wurtzite – zincblende polytypism observed in InAs. We will also present 
preliminary electrical measurements on phase pure ferroelectric capacitor 
structures. 

This work was supported by the Army Research office (W911NF-17-1-0254) 
and the National Science Foundation (DMR-1752797). 

[1] K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Phys. Rev. Lett. 112, 
127601(2014). 



Author Index 

Author Index 3 Bold page indicates presenter 

Bold page numbers indicate presenter 
— A — 
Abugri, J: TF+EM+MI+MN+OX+PS-MoM-6, 2 
Acosta, A: TF+EM+MI+MN+OX+PS-MoM-3, 1 
— B — 
Balke, N: TF+EM+MI+MN+OX+PS-MoM-10, 2 
Bassiri-Gharb, N: TF+EM+MI+MN+OX+PS-

MoM-8, 2 
Beach, G: TF+EM+MI+MN+OX+PS-MoM-5, 1 
Borchers, J: TF+EM+MI+MN+OX+PS-MoM-3, 

1 
Brehm, J: TF+EM+MI+MN+OX+PS-MoM-10, 

2 
Budhathoki, S: TF+EM+MI+MN+OX+PS-

MoM-6, 2 
— C — 
Carman, G: TF+EM+MI+MN+OX+PS-MoM-3, 

1 
Chang, J: TF+EM+MI+MN+OX+PS-MoM-3, 1 
Churikova, A: TF+EM+MI+MN+OX+PS-MoM-

5, 1 
Clark, B: TF+EM+MI+MN+OX+PS-MoM-6, 2 
— D — 
Dong, C: TF+EM+MI+MN+OX+PS-MoM-3, 1 
Du, D: TF+EM+MI+MN+OX+PS-MoM-11, 2 
— E — 
Eliseev, E: TF+EM+MI+MN+OX+PS-MoM-10, 

2 
— F — 
Fitzell, K: TF+EM+MI+MN+OX+PS-MoM-3, 1 
— G — 
Gopman, D: TF+EM+MI+MN+OX+PS-MoM-3, 

1 
Greer, J: TF+EM+MI+MN+OX+PS-MoM-5, 1 

Gupta, S: TF+EM+MI+MN+OX+PS-MoM-6, 2 
— H — 
Hauser, A: TF+EM+MI+MN+OX+PS-MoM-6, 2 
Hayden, J: TF+EM+MI+MN+OX+PS-MoM-4, 1 
Holtz, M: TF+EM+MI+MN+OX+PS-MoM-1, 1 
— J — 
Jamer, M: TF+EM+MI+MN+OX+PS-MoM-3, 1 
Jesse, S: TF+EM+MI+MN+OX+PS-MoM-10, 2 
— K — 
Kalinin, S: TF+EM+MI+MN+OX+PS-MoM-10, 

2 
Kawasaki, J: TF+EM+MI+MN+OX+PS-MoM-

11, 2 
Kirby, B: TF+EM+MI+MN+OX+PS-MoM-3, 1 
Komninou, P: TF+EM+MI+MN+OX+PS-MoM-

6, 2 
— M — 
Maksymovych, P: TF+EM+MI+MN+OX+PS-

MoM-10, 2 
Maria, J: TF+EM+MI+MN+OX+PS-MoM-4, 1 
McGuire, M: TF+EM+MI+MN+OX+PS-MoM-

10, 2 
Morozovska, A: TF+EM+MI+MN+OX+PS-

MoM-10, 2 
— N — 
Neumayer, S: TF+EM+MI+MN+OX+PS-MoM-

10, 2 
Newhouse-Illige, T: TF+EM+MI+MN+OX+PS-

MoM-5, 1 
— P — 
Paik, H: TF+EM+MI+MN+OX+PS-MoM-11, 2 
Pantelides, S: TF+EM+MI+MN+OX+PS-MoM-

10, 2 

— R — 
Rementer, C: TF+EM+MI+MN+OX+PS-MoM-

3, 1 
— S — 
Schlom, D: TF+EM+MI+MN+OX+PS-MoM-1, 

1 
Schneider, D: TF+EM+MI+MN+OX+PS-MoM-

3, 1 
Schwartz, J: TF+EM+MI+MN+OX+PS-MoM-4, 

1 
Scipioni, L: TF+EM+MI+MN+OX+PS-MoM-5, 

1 
Scurti, F: TF+EM+MI+MN+OX+PS-MoM-4, 1 
Shepard, A: TF+EM+MI+MN+OX+PS-MoM-5, 

1 
Strohbeen, P: TF+EM+MI+MN+OX+PS-MoM-

11, 2 
Sun, N: TF+EM+MI+MN+OX+PS-MoM-3, 1 
Susner, M: TF+EM+MI+MN+OX+PS-MoM-10, 

2 
— V — 
Visscher, P: TF+EM+MI+MN+OX+PS-MoM-6, 

2 
Voyles, P: TF+EM+MI+MN+OX+PS-MoM-11, 

2 
— W — 
Wang, Y: TF+EM+MI+MN+OX+PS-MoM-3, 1 
— Y — 
Yao, Z: TF+EM+MI+MN+OX+PS-MoM-3, 1 
— Z — 
Zhang, C: TF+EM+MI+MN+OX+PS-MoM-11, 

2 

 


