Tuesday Morning, October 22, 2019

Energy Transition Focus Topic Room A212 - Session TL+MS+VT-TuM

Implications of Implementation: Making Energy Transition a Reality (ALL INVITED SESSION)

Moderators: Margaret Fitzgerald, Colorado School of Mines, Natalie Seitzman, Colorado School of Mines

8:00am TL+MS+VT-TuM-1 The Energy Transition: Science and Technology Development Aspects, Richard M.C.M. van de Sanden, DIFFER, Eindhoven University, The Netherlands, Netherlands INVITED

The Paris climate agreement requires a decarbonization of our energy infrastructure leading to a CO2 neutrality by 2050. Therefore renewable energy generation by means of wind or from solar radiation through photovoltaics or concentrated solar power will continue to increase its share in the energy mix. Intermittency (due to e.g. day/night cycle), the regional variation of these energy sources, and penetration of renewable energy into other sectors than electricity (e.g. the chemical industry) requires means to store, transport and convert energy on a large scale. A promising option is the synthesis of chemicals and synthetic fuels (easily deployable within the present fossil fuels infrastructure) from raw feedstock using renewable energy. A truly circular economy requires that the raw materials are the thermodynamically most stable molecules such as water (H₂O), carbondioxide (CO₂) and nitrogen (N₂) to produce base chemical feedstock, such as e.g. hydrogen, hydrocarbons and ammonia. In this talk I will discuss the opportunities this transformation of the chemical industry provides. Furthermore, I will highlight the science and technology challenges, the catalytic materials, processes and systems developments needed that can provide compatibility of renewable energy driven chemistry with e.g. intermittency and localized production.

8:40am TL+MS+VT-TuM-3 Electrochemical CO2 Reduction Across Scales: From Fundamental Mechanisms to Practical Applications, Wilson Smith, Delft University of Technology The Netherlands, The Netherlands INVITED Electrocatalytic CO₂ reduction has the dual-promise of neutralizing carbon emissions in the near future, while providing a long-term pathway to create energy-dense chemicals and fuels from atmospheric CO2. The field has advanced immensely in recent years, taking significant strides towards commercial realization. While catalyst innovations have played a pivotal role in increasing the product selectivity and activity of both C1 and C2 products, slowing advancements indicate that electrocatalytic performance may be approaching a hard cap. Meanwhile, innovations at the systems level have resulted in the intensification of CO2 reduction processes to industrially-relevant current densities by using pressurized electrolytes, gas-diffusion electrodes and membrane-electrode assemblies to provide ample CO2 to the catalyst. The immediate gains in performance metrics offered by operating under excess CO₂ conditions goes beyond a reduction of system losses and high current densities, however, with even simple catalysts outperforming many of their H-cell counterparts. Using recent literature as a guidepost, this talk will focus on some of the underlying reasons for the observed changes in catalytic activity, and proposes that further advances can be made by shifting additional efforts in catalyst discovery and fundamental studies to system-integrated testing platforms.

9:20am TL+MS+VT-TuM-5 Perspectives on the Research and Development of Nanomaterials for Hydrogen Production, Marcelo Carmo, Forschungszentrum Jülich, Germany INVITED

Hydrogen is often considered the best means by which to store energy coming from renewable and intermittent power sources. With the growing capacity of localized renewable energy sources surpassing the gigawatt range, a storage system of equal magnitude is required, such as the production of electrolytic hydrogen by water electrolysis. Despite of more than 100 years of experience in alkaline electrolysis systems, and thousands of plants installed all over the world, only a few systems or industries remain, providing the state-of-the-art of this technology today. This is due to the fact that the cost of electrical energy has always remained as an uncomfortable barrier, with electrolytic hydrogen costs not being able to compete with the costs for the production of hydrogen by conventional steam reforming of fossil fuels. Nevertheless, today, increased interest can be observed for PEM water electrolysis technology, and over the past 20 years, new companies and projects have appeared, with new leaders being consequently established in this growing niche. The reason is that PEM electrolysis provides a sustainable solution for the production of hydrogen, and is well suited to couple with energy sources

such as wind and solar. The advantages of PEM electrolysis over alkaline electrolysis together with novel R&D approaches can potentially reduce the investment costs of PEM electrolysers. We expect that in the following years, frontier advancements on PEM electrolysis systems will appear, demonstrating a true capacity to ultimately establish hydrogen as a key player in the energy market, and contribute to a future hydrogen economy.

11:00am TL+MS+VT-TuM-10 Impacts and Adaptation Strategies in Ethiopia, Aschale Dagnachew Siyoum, Xavier University of Louisiana

This paper highlights climate change and variability and its impact and adaptation strategies in Ethiopia. Due to low adaptive capacity and high sensitivity of socio economic systems, climate vulnerability is worsening over the last few decades in Ethiopia. Available evidences showed that since 1960, the mean annual temperature of the country has risen by about 1.3°C with an average rate of 0.28°C per decade imposing a significant challenge on food security, water availability, energy supply, poverty reduction and sustainable development efforts of the nation. Ethiopia has responded to the increasing impact of climate change and variability through developing relevant adaptation strategies, plans and policies largely focused on decreasing vulnerability in many different sectors including agriculture and food security, water resources, forestry, and health. To tackle the impact of climate change, the government has approved the National Adaptation Program of Action (NAPA) in 2007 which includes projects that focused on promoting drought insurance program, strengthening drought and flood early warning systems, developing smallscale irrigation and water harvesting schemes in arid, semi-arid, and dry sub-humid areas, and realizing food security through a multi-purpose largescale water development project. Results, however, shows that although some progress has been made in addressing the impacts of climate change and variability, adaptation measures implemented over the last few decades were generally ineffective resulting in increasing losses as more and more people occupy vulnerable areas. This requires a sustained effort to further plan and implement the right mix of climate change adaptation strategies to address vulnerability to biodiversity and humanity to the increasing impacts of climate change. Addressing the impact of climate change requires a good understanding of the nexus between climate change adaptation measures and sustainable development as well as knowledge of climate change adaptation tools and techniques, which when used properly can minimize the total damage to life and property.

11:20am TL+MS+VT-TuM-11 Developing and Scaling Up the Manufacturing of Thin Film Materials for the Future of Energy Production, Storage, and Reduction, Ken Nauman, Von Ardenne North America INVITED

The world, and thus the economy, are clearly dependent on energy and in particular electricity. Production of electricity is ever increasing while the desire to create cleaner sources becomes a higher priority to reduce the environmental impact. The transition to electricity for mobility in transportation and communication relies on new technology to improve market penetration. Thus, the three key aspects of electricity in our modern society are: generation, storage, and saving. In order to make the energy transition a profitable reality, companies that develop technology will have to reduce the cost of energy production and storage while also considering how to lower energy usage. This talk will cover these key aspects from the perspective of an equipment and process technology company. Companies such as Von Ardenne that develop thin film materials have focused on these topics to reduce the CapEx and CoO for our customer's factories. This includes processes for Thin Film Photovoltaics and Crystalline Photovoltaics, along with emerging cell architectures, to reduce the cost of electricity generation while reducing overall CO2 production. Our company also works on leading material science in battery and fuel cell technology to increase storage capacity and cost of storing energy. Finally, other technology development is focused on saving energy with low-e coatings for glass and plastics. This presentation will review the history of the technological development as well as the latest trends, economics, and status of market leading performance in manufacturing products related to generating, storing, and saving electricity.

Author Index

Bold page numbers indicate presenter

— C — Carmo, M: TL+MS+VT-TuM-5, 1 — N — Nauman, K: TL+MS+VT-TuM-11, 1 - S -Siyoum, A: TL+MS+VT-TuM-10, 1 Smith, W: TL+MS+VT-TuM-3, 1