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Fundamentals of Catalyst Degradation: Dissolution, 
Oxidation and Sintering 
Moderator: Gareth S. Parkinson, TU Wien, Austria 

4:00pm DM2+BI+SS-ThA-6 Stability Challenges in Electrocatalysis, Serhiy 
Cherevko, Forschungszentrum Jülich GmbH, Germany INVITED 

Many industrially important electrochemical energy conversion 
technologies, such as electrolysis and fuel cells, rely on expensive noble 
metal electrocatalysts to accelerate reactions, and thus, improve energy 
conversion efficiency. Despite their relatively high stability, even noble 
metals are not completely immune. Indeed, the latter fact represents a 
considerable challenge in the wide-spread commercialization of 
electrolysers and fuel cells. Electrocatalyst or support corrosion, particle 
agglomeration and detachment, Ostwald ripening, structural and 
morphological changes are just a few examples of possible degradation 
processes.1 These processes clearly illustrate the level of complexity one 
has to deal with in order to understand and circumvent degradation in real 
devices. Thus, it is difficult to imagine modern electrocatalysis research 
without advanced analytical tools. In this talk I will demonstrate that the 
application of on-line inductively coupled plasma mass spectrometry, on-
line electrochemical mass spectrometry, and identical location 
transmission electron microscopy in electrocatalysis research can assist in 
clarifying the mechanisms leading to degradation. As some representative 
examples I will show degradation of the state-of-the-art and advanced 
platinum based catalysts in fuel cells and iridium based catalyst in water 
electrolysis.2-4 Time will also be devoted to discussing application of 
alternative non-noble metal catalysts in the energy conversion 
technologies and their stability. Finally, stability in other electrocatalytic 
systems, e.g. photo-electrochemical water splitting or carbon dioxide 
reduction will be touched. 

Literature: 
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2 Cherevko, S. et al. Nano Energy29, 275-298, (2016). 
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4:40pm DM2+BI+SS-ThA-8 Self-limited Growth of an Oxyhydroxide Phase 
at the Fe3O4(001) Surface in Liquid and Ambient Pressure Water, Florian 
Kraushofer, TU Wien, Austria; F Mirabella, TU Wien, Austria, Germany; J 
Xu, J Pavelec, J Balajka, M Müllner, N Resch, Z Jakub, J Hulva, M Meier, M 
Schmid, U Diebold, G Parkinson, TU Wien, Austria 

Atomic-scale investigations of metal oxide surfaces exposed to aqueous 
environments are vital to understand degradation phenomena (e.g. 
dissolution and corrosion) as well as the performance of these materials in 
applications. Here, we utilize a new experimental setup for the UHV-
compatible dosing of liquids to explore the stability of the Fe3O4(001)-(√2 × 
√2)R45° surface following exposure to liquid and ambient pressure water, 
using low energy electron diffraction (LEED), x-ray photoemission 
spectroscopy (XPS) and scanning tunnelling microscopy (STM). 

Short-time exposure of the surface to clean H2O results in hydroxylation of 
the surface, which is not observed in UHV. After longer exposure times, we 
observe lifting of the (√2 × √2)R45° reconstruction with LEED and stronger 
hydroxylation of the surface with XPS, in agreement with previous reports. 
However, scanning tunnelling microscopy (STM) images reveal a more 
complex situation than simply reverting to a bulk-truncation, with the slow 
growth of an oxyhydroxide phase, which ultimately saturates at 
approximately 40% coverage. We conclude that the new material contains 
OH groups from dissociated water coordinated to Fe cations extracted 
from subsurface layers, and that the surface passivates once the surface 
oxygen lattice is saturated with H because no further dissociation can take 
place. 

5:00pm DM2+BI+SS-ThA-9 The Impact of W on the Early Stages of Oxide 
Evolution for Ni-Cr Alloys, Cameron Volders, V Avincola, University of 
Virginia; I Waluyo, Brookhaven National Laboratory; J Perepezko, University 
of Wisconsin - Madison; P Reinke, University of Virginia 

Ni-Cr alloys are highly coveted as they exhibit superior corrosion resistance 
due to the formation of a passive chromia film which helps protect the 
underlying alloy from degradation. The properties of this system are 

further enhanced through the addition of minor alloying elements such as 
Mo or W. For example, Mo is known to reduce catastrophic events such as 
pitting and crevice corrosion, thereby enhancing overall corrosion 
resistance. The ideal composition for technical Ni-Cr alloys has been 
optimized over many decades, however, the mechanistic understanding for 
the role of alloying elements such as Mo and W has not been fully 
developed. The primary objective of this work is to formulate a better 
mechanistic understanding of how the addition of W impacts the early 
stages of oxidation for this system and eventually use this information for 
further improvement of Ni-Cr alloys. 

To achieve our goal, a series of oxidation experiments with the direct 
comparison between Ni-15Cr and Ni-15Cr-6W (weight percent) samples 
were performed and analyzed with the use of X-ray photoelectron 
spectroscopy (XPS). The first set of experiments employed an in-operando 
XPS approach where the modulation of alloy and oxide composition and 
bonding was observed over an extended period of time delivering a 
detailed view of the reaction pathways. The key results from this work 
include the observation of Cr surface segregation in the alloys prior to 
oxidation, which contributes to a rapid nucleation of Cr oxide species in the 
first reaction steps. The more intriuing result was the addition of W to the 
alloy resulted in a near complete suppression in the formation of Ni oxide, 
while further enhancing the formation of a pure chromia phase, which has 
been attributed to the addition of W increasing the supply of Cr to the 
surface and will be discussed. 

A second series of XPS experiments focus on oxidation as function of 
crystallographic orientation of individual, large grains for Ni-15Cr and Ni-
15Cr-6W. The differences in atom density and surface energies as a 
function of orientation lead us to expect significant differences in reactivity 
which will impact passivation and oxide performance. This has been 
demonstrated for aqueous corrosion of NiCr and NiCrMo alloys by Scully et 
al. J. Phys. Chem. C, 2018, 122 (34), 19499-19513, and our work is 
complementary for thermal oxidation studies. In this work, Ni-15Cr and Ni-
15Cr-6W samples were thermally oxidized and we will present and discuss 
the difference in oxidation products for various grain orientations for both 
samples. 

5:20pm DM2+BI+SS-ThA-10 The Stability of Platinum in Non-aqueous 
Media, J Ranninger, S Wachs, J Möller, K Mayrhofer, Balázs Berkes, 
Forschungszentrum Jülich GmbH, Germany 

Many basic reactions in electrochemistry, like the hydrogen oxidation 
reaction, oxygen reduction reaction, water oxidation or CO2 reduction 
reaction has been thoroughly studied in aqueous electrolytes. To these 
fundamental studies well defined experimental conditions have been 
chosen: smooth or single crystal electrodes with known surface structures, 
ultrapure electrolytes and very clean experimental apparatus. In many 
respects electrocatalysis in organic solvents is much less advanced than its 
understanding in aqueous systems. 

The example of LIBs shows us, however, clearly how much potential of 
non-aqueous electrochemistry holds, in this particular example for the 
development of energy storage devices. Other important and possible 
technical applications are new type of batteries, electro-organic synthesis 
including electrochemical reduction of CO2, electrodeposition, 
supercapacitors or electrochemiluminescence. 

Stability of electrochemical systems is a particularly important question in 
electrocatalysis. No matter if it is a fuel cell, a battery, a supercapacitor, a 
construction subject to corrosion or an electrode used for synthesis, 
economic considerations require a certain lifetime of these systems. 
Therefore, it is also important to understand electrocatalysis especially the 
aspect of stability in non-aqueous electrolytes. To this end very 
sophisticated, often in situ and real-time analysis methods are required. In 
this work we show a powerful approach to study dissolution phenomena in 
non-aqueous electrochemical systems on the example of platinum. 

Platinum is often considered to be a model electrode and catalyst material. 
This metal is probably the most thoroughly studied one in 
electrochemistry, however, it still shows many interesting yet not well 
understood features. This is also true for the stability of the metal during 
potential cycling. The electrochemical stability window of organic 
electrolytes is usually much higher than that of water enabling the 
simultaneous cycling and downstream analysis of dissolution in a higher 
potential range. As a result, even the electrochemistry of platinum shows 
hitherto unveiled phenomena regarding its dissolution mechanism 
especially when using electrolytes with ultra-low (1 ppm) water content. In 
this work, we focus on the effect of water, anions, cations and organic 
solvent molecules on the anodic and cathodic dissolution behavior of 
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platinum. To demonstrate the benefits of this novel method on the field of 
non-aqueous electrochemistry the stability of other non-aqueous systems 
will be discussed shortly, too. 

5:40pm DM2+BI+SS-ThA-11 Stabilizing Transparent Conductive Oxides as 
a Route to Long-Lived Thin Film Photovoltaics: A Case Study in CIGS, N 
Kovach, Colorado School of Mines; R Matthews, E Pentzer, Case Western 
Reserve University; L Mansfield, National Renewable Energy Laboratory; T 
Peshek, NASA Glenn Research Center; Ina Martin, Case Western Reserve 
University 

Degradation of the aluminum-doped zinc oxide (AZO) top contact is a 
known failure mode in Cu(In,Ga)Se2 (CIGS) solar cells. The degradation of 
the AZO can be observed in device and module current-voltage 
characteristics as an increase in series resistance and decrease in fill factor. 
Due to its low cost and earth abundance, AZO is a good choice for the TCO 
in thin-film solar cells. However, it has one of the higher degradation rates 
of TCOs under damp heat stress. 3-aminopropyltriethoxysilane (APTES) was 
used to modify the AZO top contacts in CIGS solar cells. Results 
demonstrate that the application of the nm-scale modifier mitigates AZO 
degradation in damp-heat exposure, and further, arrests the degradation 
of the full CIGS device. 

APTES modification of thick (~0.8 μm) AZO films significantly impedes the 
electrical degradation of the material caused by DH exposure, without 
significantly affecting the initial optical, electrical, or structural properties 
of the AZO films. Upon 1000 h of DH exposure, resistivity of both systems 
increased and can be attributed only to decreased mobility, as carrier 
concentration was consistent. APTES modification slowed the increase in 
AZO resistivity over 1000 h of DH exposure; however, the protective nature 
of APTES modification became critical after 1500 h. At this extended 
exposure time, macroscopic degradation was observed only for bare AZO 
including pitting and delamination and was accompanied by an increase in 
resistivity and decrease in carrier concentration. X-ray photoelectron 
spectroscopy (XPS) data show that the APTES layer stabilizes the oxygen 
binding environment of the AZO surface, suggesting that covalent 
passivation of AZO surface sites by silanization essentially “caps” reactive 
moieties, thereby improving the stability of the material. 
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