MOCVD growth and characterization of wide band gap ZnGeN₂ thin films

Md Rezaul Karim¹, Benthara Hewage Dinushi Jayatunga², Zixuan Feng¹, Menglin Zhu³, Kathleen Kash²,

Jinwoo Hwang³, Hongping Zhao^{1,3‡}

¹Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA ²Department of Physics, Case Western Reserve University, Cleveland, OH 44106, United States

³Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA

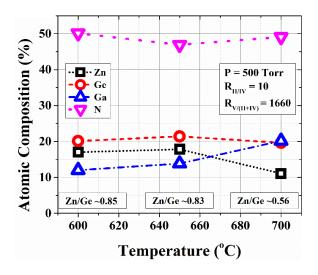


Figure 1. Atomic composition of Zn, Ge in three $ZnGeN_2$ films grown on GaN substrate at different temperatures. The compositions of Ga and part of the N corresponds to the substrate.

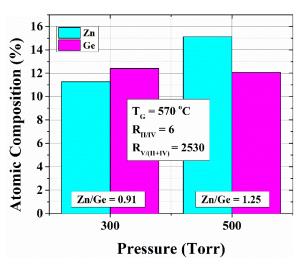


Figure 2. Atomic composition of Zn, Ge in two ZnGeN₂ films grown on GaN substrate with identical conditions except the pressure. With otherwise identical conditions, Zn/Ge atomic percentage ratio increases with increase in pressure.

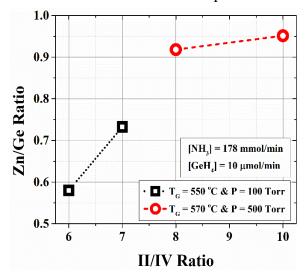


Figure 3. Effect of DEZn/GeH₄ molar flow rate ratio on Zn/Ge atomic ratio in the grown ZnGeN₂ films.

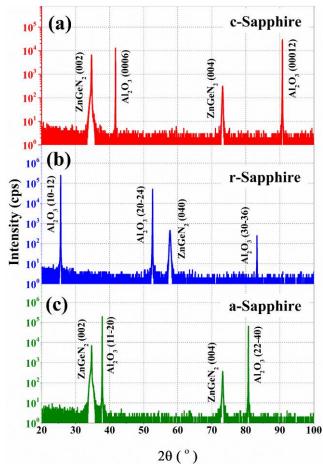


Figure 4. XRD 2θ - ω spectra of ZnGeN₂ films on (a) c-sapphire, (b) r-sapphire and (c) a-sapphire substrates. ZnGeN₂ grows along c-axis on c-and a-sapphire substrates whereas along Pna2₁ (010) direction on r-sapphire.

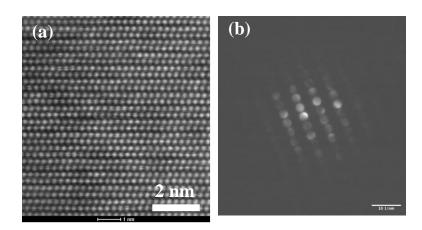


Figure 5. High resolution scanning transmission electron microscopy (STEM) high angle annular dark field (HAADF) image (a) and convergent beam electron diffraction pattern (b) of $ZnGeN_2$ film grown on c-sapphire.