
Wednesday Afternoon, November 8, 2023 

Wednesday Afternoon, November 8, 2023 1 2:20 PM 

Applied Surface Science Division 
Room B117-119 - Session AS+CA+EL+EM+SE+SS+TF-WeA 

Quantitative Surface Analysis I 
Moderators: David Cant, National Physical Laboratory, UK, Peter Cumpson, 
University of New South Wales, Christopher Moffitt, Kratos Analytical Inc, 
Lev Gelb, University of Texas at Dallas 

2:20pm AS+CA+EL+EM+SE+SS+TF-WeA-1 Status of Efforts to Upgrade the 
Quality of Surface Analysis Data in the Literature, Donald Baer, Pacific 
Northwest National Laboratory 

Multiple efforts are being undertaken to address a growing presence of 
faultysurface analysis data and/or analyses appearing in the literature. 
Issues include bad data, incorrect analysis, and highly incomplete reporting 
of instrument and analysis parameters. This talk describes the status of four 
efforts to address some of the issues. Recognition of this problem within 
the surface analysis community has increased with an understanding that 
both inexperienced users and increased use of surface analysis methods 
outside the surface analysis community contribute to the problem. The 
current efforts build upon decades of development and efforts by standards 
committees, excellent books and journal publications, websites, short 
courses, and other efforts. A collection of guides, protocols and tutorials 
addressing reproducibility issues with a significant focus on XPS was 
published in JVSTA in 2020/21. A second collection, Reproducibility 
Challenges and Solutions II, with a more general focus on Surface and 
Interface Analysis was initiated in 2022 and is being finalized. The second 
collection addresses several techniques, including SIMS, SPM, and UPS, and 
includes topics such as theoretical modeling and machine learning in data 
analysis. A second effort focuses on a part of the community less interested 
in general understanding but needs to answer specific surface analysis 
questions. A new type of paper called Notes and Insights is being published 
in the journal Surface and Interface Analysis with the objective to provide 
incremental bits of useful information of importance to non-expert 
analysts. Two additional activities are underway to assist with reporting 
issues. Examination of papers in multiple journals found that instrument 
and analysis related information needed to assess or reproduce data is 
often incomplete or absent. To assist authors in reporting instrument 
parameters, papers describing in some detail related families of commercial 
instruments are being prepared for Surface Science Spectra. These papers 
describe the instrument, major components, geometry and provide 
example data related to common data collection modes. Authors will be 
able to reference these papers and identify specific modes of instrument 
operation used in their research. Another parameter reporting activity 
concerns sample handling before analysis. ISO Technical Committee 201 is 
developing a series of documents (ISO 20579 parts 1 to 4) on what needs to 
be reporting regarding sample handling, storage, processing, and mounting 
for analysis. These standards describe what needs to be reported and 
contain informative annexes that provide information regarding the needs 
and challenges to proper sample handling to produce reliable useful surface 
analysis data. 

2:40pm AS+CA+EL+EM+SE+SS+TF-WeA-2 The behavior of the Shirley 
background of the Ti 2p spectra across the Ti 1s edge, Dulce Maria 
Guzman Bucio, CINVESTAV-Unidad Queretaro, Mexico; D. Cabrera German, 
Universidad de Sonora, Mexico; O. Cortazar Martinez, J. Raboño Borbolla, 
CINVESTAV-Unidad Queretaro, Mexico; M. Vazquez Lepe, Universidad de 
Guadalajara, Mexico; C. Weiland, J. Woicik, National Institute of Standards 
and Technology; A. Herrera Gomez, CINVESTAV-Unidad Queretaro, Mexico 

A wide variety of photoemission spectra display a step-shaped background, 
called the Shirley-type background, which should be accounted for in the 
total background signal for reliably assessing chemical composition. 
However, it cannot be modeled with any method based on extrinsic 
processes like the inelastic dispersion of the photoelectrons (e.g., Tougaard-
type backgrounds). Although its physical origin is still unknown, 
experimental data suggest that the Shirley-type background is due to 
phenomena occurring inside the atom [1,2]. To gain insights into those 
phenomena, we studied the behavior of the Shirley-type background for 
the Ti 2p photoemission spectra. 
 
 

In this work, Ti 2p photoemission spectra were acquired with Synchrotron 
light (at Beamline 7-2 at the Brookhaven National Laboratory) from a clean 
metallic titanium film (sputtered on a Si (100) substrate) capped with an 

ultra-thin aluminum layer. The spectra were collected with 44 excitation 
energies around the Ti 1s edge. By simultaneously fitting Ti 2p 
photoemission spectra obtained with excitation energies higher than the Ti 
1s edge, we robustly determined the peak structure of the Ti 2p spectra. 
Outstandingly, the parameter of the Shirley-type background associated 
with the Ti 2p peak structure is modulated as the photon energy crosses 
the Ti 1s edge. The relation of this phenomenon with the physical origin of 
the Shirley background will be discussed. The KVL2,3 Auger peaks—which 
overlap with the Ti 2p peaks—do not have a step-shaped background for 
most of the excitation energies. 
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3:00pm AS+CA+EL+EM+SE+SS+TF-WeA-3 Chemical Analysis of Multilayer 
System by Photoemission: The Binding Energy Reference Challenge, 
Thierry Conard, A. Vanleenhove, IMEC Belgium; D. Desta, H. Boyen, 
University of Hasselt, Belgium 

XPS is a well-established technique used for non-destructive analysis of the 
chemical composition of thin layers and interfaces. It is most commonly 
performed using Al Kα radiation (1486.6 eV), which limits the analysis to 
the top 5-10nm. The recently developed laboratory-based hard X-ray 
photoelectron spectroscopes (HAXPES) provide new analysis options. They 
enable the analysis of thicker film structures and interfaces buried down to 
20-50 nm depending on the photon energy and facilitate the analysis of 
fragile buried layers without ion-induced chemical damage. 

Increasing the number of analyzed (insulating) layers enhances the risk of 
significant vertical differential charging and makes the repeatability of 
binding energy determination more challenging. While charging has to be 
taken into account for XPS, the analysis of most XPS spectra is quite 
straightforward as long as the surface charge is stable and the lateral 
distribution of surface charge is uniform within the area of analysis. For 
HAXPES however vertical charge distribution comes into the game for a 
large group of structures whose development can benefit from HAXPES 
analysis. Vertical charge build-up can be complex, especially if examined 
structures exist of multiple layers and hence multiple interfaces, containing 
a large variety of materials. But even in ‘simple’ non-conducting one-layer 
structures a vertical charge gradient builds up when exposed to X-rays and 
small changes in the parameters of standard surface charge neutralization 
techniques - as the use of e-beam flood guns - can influence the nature of 
the charge gradient. 

In this work, we will examine the influence of measurement conditions in 
single and multiple layers systems relevant to the microelectronic industry 
on the determination of precise binding energies. 

HAXPES spectra of technologically relevant samples will be discussed to 
demonstrate the challenge of determining exact binding energy values. The 
set of examined samples comprises oxide layers Si samples and metal/high-
k/Si stacks including high-k materials as HfO2 and Al2O3. The surface 
potential will be precisely set and monitored in situ by depositing a metallic 
layer (such as Ag) on top of the stack and applying an external potential 
instead of using an electron neutralization source. All experiments are 
performed in a PHI Quantes system and/or a Scienta Omicron HAXPES Lab, 
both equipped with two monochromatic X-ray sources: an Al Kα (1486.6 
eV) and a Cr Kα (5414.8 eV - Quantes) or Ga Kα (9252.1 eV – HAXPES lab) X-
ray source. 
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3:20pm AS+CA+EL+EM+SE+SS+TF-WeA-4 Where Are We on the Road-Map 
to Artificially Intelligent Interpretation of X-ray Photoelectron Spectra?, C. 
Moffitt, Kratos Analytical Inc; A. Roberts, J. Counsell, C. Blomfield, Kevin 
Good, K. Macak, Kratos Analytical Limited, UK 

Robust peak identification is crucial for accurate sample analysis using X-ray 
photoemission spectroscopy (XPS). Automation of peak ID enhances this 
process by minimizing user error and bias. Current acquisition software 
offers improved computer-derived peak identification from unknown 
samples, instilling confidence in the correct identification of elements. 
Moreover, this forms the foundation for an automated sample analysis 
workflow known as Data-dependent Analysis (DDA). DDA involves 
identifying peaks in a survey spectrum and subsequently acquiring high-
resolution spectra from major components. A recent User survey revealed 
that a significant majority of users rely on the large area survey acquisition 
mode as a starting point for analysis. 

To provide a metric for confidence in the DDA process, existing spectral 
analysis data, which includes the element composition information, is used 
to generate reference spectra for testing purposes. These reference spectra 
serve as the basis dataset against which the performance of the automated 
analysis algorithm can be evaluated. By comparing the results of the 
algorithm with the reference spectra, statistical parameters can be 
calculated to assess the algorithm's precision, sensitivity, specificity, and 
accuracy in identifying elements of unknown spectra. 

For experienced analysts, DDA serves as a time-saving acquisition method, 
while for inexperienced analysts, it provides assurance in accurate peak 
identification and appropriate high-resolution spectra acquisition. Here we 
highlight current status of automated XPS data acquisition in relationship to 
the ‘expert system’, championed in the early 2000’s and full AI 
interpretation of XPS spectra of the future. 

4:20pm AS+CA+EL+EM+SE+SS+TF-WeA-7 Thin Film Analysis by XPS: 
Quantitative Analyses Using Physics-Based and Machine-Learning 
Approaches, Lev Gelb, N. Castanheira, A. Walker, University of Texas at 
Dallas 

We present progress towards quantitative analysis of XPS data using both 
model-based “fitting” approaches and machine learning methods. Two 
separate applications are considered. 
 
The first concerns the simultaneous extraction of both compositional 
profiles and sputtering parameters from XPS sputter depth-profiles of 
multilayer films. Depth-profile data are routinely processed to provide 
“fractional composition vs ion dose” profiles, but such analyses typically 
assume the sample is homogeneous in the probed region, which is not true 
near interfaces, and cannot precisely convert between units of ion dose and 
depth without extensive calibration data. Our approach is to first construct 
analytical models for both the sample structure and for the sputtering 
process, and then to determine the model parameters (layer thicknesses, 
interfacial widths, material removal rates, etc.) that are most likely given 
the observed apparent fractional composition profiles. This is done 
numerically, by iteratively comparing simulated and observed apparent 
composition profiles. The only additional required inputs are the inelastic 
mean free paths for each tracked peak in each material present. The 
efficacy of this approach is demonstrated using both synthetic and 
experimental data sets, and various model improvements (sputter-induced 
mixing, in situ chemical reactions) are discussed. 
 
The second application concerns the application of machine-learning tools 
to remove the inelastic scattering background from XPS spectra in order 
that accurate peak areas can be obtained. Our approach here is to generate 
a training data set which consists of a thousands of simulated XPS spectra 
with and without inelastic scattering included. This is accomplished using 
the SESSA software package[1]. This data set is then used to train a neural 
network algorithm to output a “no-background” spectrum from an input 
“with-background” spectrum; this output spectrum can then be used to 
compute peak areas for compositional analysis. The training set generation 
methodology and network structure are discussed, and application of the 
tool to both simulated and experimental spectra is demonstrated. 
 
[1] Werner, W. , Smekal, W. , Powell, C. and Gorham, J. (2021), Simulation of 
Electron Spectra for Surface Analysis (SESSA) Version 2.2 User's Guide, Natl 
Std. Ref. Data Series (NIST NSRDS), 
https://doi.org/10.6028/NIST.NSRDS.100-2021. 

4:40pm AS+CA+EL+EM+SE+SS+TF-WeA-8 Room Temperature Ionic Liquids 
as Reference Materials for Photoelectron Spectrometers, Benjamen Reed, 
National Physical Laboratory, U.K.; J. Radnik, BAM Berlin, Germany, UK; A. 
Shard, National Physical Laboratory, U.K. 

Room-temperature ionic liquids (RTILs) are materials consisting of organic 
salts that are liquid below temperatures of 100°C and are used in several 
fields including electrochemistry,1 pharmaceutics, and medicine.2 RTILs 
have several notable properties that make them ideal for X-ray 
photoelectron spectroscopy (XPS) analysis. They have an extremely low 
vapor pressure and high surface tension, and so can be analysed using 
conventional XPS under ultrahigh vacuum without the need for near-
ambient pressure instrumentation. Also, when deposited in a recessed 
sample holder, the meniscus of an RTIL will be perfectly flat meaning that 
there are no contributions from sample topographic effects. Finally, and 
most importantly, they are highly homogeneous and have well-defined 
stoichiometries.3 

These properties make RTILs potential reference materials for validating the 
intensity calibration of a photoelectron spectrometer. RTILs with non-
coordinating bistriflimide (NTf2) anions (e.g. PMIM+NTf2

–) or dimethyl 
phosphate (DMP) anions (e.g. MMIM+DMP–) are such candidates, with core 
levels up to ∼800 eV binding energy, making them apt for verifying the 
quantification of light elements, especially for organic materials.4,5 

To accurately determine peak areas, however, requires the principal and 
secondary photoelectron signals to be deconvolved. Previous attempts by 
multiple laboratories using different quantification methods give a mean 
atomic composition within 1 at.% of the known stoichiometry, but some 
individual elements (such as fluorine) exhibit differences greater than 1 
at.% because the elastic and inelastic secondaries are not suitably 
deconvolved. Attention must be paid to the energy loss function that 
defines the inelastic background over the full energy range of an XPS 
spectrum so that a suitable Tougaard background subtraction can be 
applied.6 Here we present a study on several RTILs and discuss how they 
may be used to validate an XPS intensity calibration and provide confidence 
in measurements to XPS instrument operators. 

1M. Armand, F. Endres, D. R. MacFarlane et al., Nat. Mater.8, 621 (2009). 

2K. S. Egorova, E. G. Gordeev, and V. P. Ananikov, Chem. Rev. 117, 7132 
(2017). 

3E. F. Smith, I. J. Villar Garcia, D. Briggs et al., Chem. Commun. 45, 5633 
(2005). 

4B.P. Reed, J. Radnik, and A.G. Shard, Surf. Sci. Spectra29, 014001 (2022). 

5X. Knigge and J. Radnik, Surf. Sci. Spectra30, 014006 (2023). 

6M. P. Seah, I. S. Gilmore, and S. J. Spencer, Surf. Sci. 461, 1 (2000). 

5:00pm AS+CA+EL+EM+SE+SS+TF-WeA-9 Fractional Coverage Analysis of 
Monolayers with XPS and Non-Destructive Depth-Profiling with Combined 
Soft and Hard X-Rays, Norbert Biderman, K. Artyushkova, D. Watson, 
Physical Electronics USA 

X-ray photoelectron spectroscopy (XPS) is a well-established technique for 
non-destructive analysis of the chemical composition of thin layers and 
interfaces. Angle-resolved XPS (AR-XPS) has been used to determine 
composition of depth profiles and layer thicknesses, traditionally with Al Kα 
(1486.6 eV) X-ray beams for depths up to 5-10 nm below the surface. In 
recent years, new AR-XPS capabilities have been added to Physical 
Electronics XPS scanning microprobe instruments including Cr Kα (5414.8 
eV) hard X-ray photoelectron spectroscopy (HAXPES) that can probe buried 
interfaces up to 15-30 nm below the surface. Coinciding with the HAXPES 
development, the StrataPHI analysis software was developed to reconstruct 
quantitative, non-destructive XPS/HAXPES depth profiles from angle-
dependent and single-angle photoelectron spectra. 
 

In this talk, we will show that the StrataPHI software has been further 
developed to combine Al Kα and Cr Kα XPS and HAXPES data within a single 
depth profile to enhance extracted analytical information from various 
depths below the surface. We will explore the method of the combined 
technique as well as its application to multilayered thin film samples. The 
updated StrataPHI software also includes a fractional coverage analysis 
mode, relevant in situations where ultra-thin films exist as discrete islands – 
commonly observed in early thin-film deposition stages on the substrate 
rather than as a continuous, uniform film. A model system of discrete 
molybdenum sulfide (MoS2) monolayer triangles deposited on SiO2/Si 
substrate will be discussed. 
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Such added StrataPHI capabilities allow for scientists and engineers in 
metrology and research & development to analyze multi-layered thin films 
and ultra-thin films rapidly and non-destructively without potentially 
damaging ion beam sputtering that might otherwise be required to depth-
profile or sputter-clean adventitious contamination off the surface. 

5:20pm AS+CA+EL+EM+SE+SS+TF-WeA-10 Reassessing the Reduction of 
Ceria in X-Ray Photoelectron Spectroscopy, David Morgan, Cardiff 
University, UK 

Given its excellent redox abilities, the use of cerium dioxide (CeO2, ceria) 
and related materials in catalysis is widespread [1]. This Ce3+/Ce4+ redox 
shuffle allows for great catalytic ability and a method of correlation of 
catalytic activity to the state of ceria [2–4].Given that catalysis is a surface 
mediated process, XPS is critical in the analysis of pre- and post-mortem 
materials. 

Over the years there has been debate on the degree of reduction of CeO2 
during XPS analysis. Therefore, in continuation of our work on 
understanding the reduction of materials in modern spectrometers [5], we 
have investigated different cerium oxide preparations and shown that not 
only is the rate of reduction dependent on instrument type and 
experimental configuration (and hence appropriate analysis protocols 
should be implemented), but is also related to the morphology of the 
cerium which may, at least in part, account for the discrepancies in the 
degree of reduction in the literature. It is postulated that reduction rates 
could be used to indicate likely ceria morphology where other analysis is 
unavailable. 
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5:40pm AS+CA+EL+EM+SE+SS+TF-WeA-11 Using High Sensitivity – Low 
Energy Ion Scattering Spectroscopy (LEIS) to Unravel the Complex Nature 
of High Entropy Alloys, Matthias Kogler, C. Pichler, Centre for 
Electrochemistry and Surface Technology (CEST GmbH), Austria; M. Valtiner, 
Vienna University of Technology, Austria 

Complex metallic materials such as Multi-Principal Alloys (MPEAs) and High 
Entropy Alloys (HEAs) have emerged as a promising class of materials given 
their unique inherent characteristics. Excellent mechanical, thermal, and 
corrosion properties allow for a broad spectrum of applications. However, 
due to the multi-element nature of these alloys, characterisation of the 
composition and microstructure proves to be a challenging task. 

Especially with regard to corrosion-protective passivation films, the 
complex correlations with the corrosion behaviour are fully unclear to date, 
and require an in-depth atomic level characterisation and rationalisation. 
However, the precise layer by layer structure of such passive films is 
particularly demanding to assess, since traditional techniques such as XPS 
(X-ray photoelectron spectroscopy) or AES (Auger electron spectroscopy) 
have analysis penetration depths of several nanometres and cannot reach 

atomic layer resolution. However, to fully understand and quantify the 
passivation layer structure, such an atomic layer resolution of the surface 
region is necessary, due to the complexity of HEAs. 

In order to obtain an exact understanding of the atomistic mechanism at 
the monoatomic layer level, High-Sensitivity - Low Energy Ion Scattering 
Spectroscopy (HS-LEIS), was applied, which provides the required 
monolayer sensitive resolution to study the passivation layers of such 
complex multi-component alloys. The unique surface sensitivity combined 
with the implementation of in-situ treatment methods enabled the real-
time study of oxide layer growth, as well as the analysis of temperature-
dependent changes in the elemental surface composition. Due to the high 
resolution achieved by static and dynamic sputter depth profile modes, we 
could determine the exact composition of the HEA passivation layer with 
resolution on atomic monolayer scale. 

The findings provide the potential to significantly advance the current 
understanding of the passivation behaviour of MPEAs and HEAs, and the 
development of novel metallic materials with superior properties. Valuable 
insights for understanding the material characteristics for those highly 
advanced materials could thereby be generated. 
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