
Figure.1 Overall architecture of the proposed StyleSwin[1]-based ILT model, built upon

DAMO ILT[2]. The target pattern (input) is processed via convolution and residual blocks,

then passed to the StyleSwin-GAN stage to produce the optimized mask.
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Table.1 Comparison of mask optimization results on the LithoBench[3] MetalSet dataset.
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Figure.3 Mask Optimization for MetalSet Patterns of LithoBench (a)Ground Truth, (b)GAN-

OPC, (c)CFNO, (d)Neural-ILT, (e)DAMO, (f)StyleSwin(ours)

Figure.2 Visualization of the evaluation metrics. (a) L2 error captures the pixel-level

discrepancy between the nominal print and the intended design. (b) PVB represents the

maximum pattern variation across different process conditions. (c) EPE measures how far the

actual edges deviate from the target edges. (d) #Shots counts the rectangular exposures

needed to form the mask.
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Figure.4 Overview of the StyleSwin[1] architecture for ILT. (a) Schematic of the StyleSwin

block borrowed in this work. It combines SPE (Sine Positional Encoding) and RPE (Relative

Positional Encoding) to capture positional information, while AdaIN (Adaptive Instance

Normalization) incorporates the 64-dimensional noise derived from a style latent. (b)

Example illustration of the block’s double attention (regular + shifted). Two window-based

attentions run in parallel and their outputs are concatenated to form the final feature map.




