Supplemental figure for

Self-referencing photothermal common-path interferometry to augment ellipsometry in low-loss membranes

Tanuj Kumar¹, Demeng Feng¹, Merlin Mah², Phyo Lin², Shenwei Yin¹, Hongyan Mei¹, Aakankshya Mishra³, Ronald J. Warzoha⁴, Victor W. Brar³, Joseph J. Talghader², Mikhail A. Kats¹

¹Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA

²Department of Electrical and Computer Engineering, University of Minnesota–Twin Cities, MN 55455, USA

³Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA

⁴Department of Mechanical Engineering, United States Naval Academy, Annapolis, MD 21402, USA

Supplemental figure (a) Combined optical constants for stoichiometric Si₃N₄ derived from our experiments using UV-Vis-NIR ellipsometry (230 nm – 2500 nm), mid-IR FTIR spectroscopy (2100 nm – 16 μ m), and photothermal common-path interferometry (PCI) at 1064 nm. Ellipsometry and FTIR spectroscopy are fast, convenient, and broadband instruments, but are limited in the measurement of loss in low-loss materials. PCI is a sensitive pump-probe technique capable of sub-ppm-level absorption measurements for a particular wavelength. For stoichiometric Si₃N₄, the low loss region where ellipsometry and FTIR spectroscopy are not sensitive enough to measure loss is from ~300 nm to ~7 μ m; estimates of the extinction coefficient vary greatly in this range depending on the oscillator model used. The extinction coefficient measured for a 200-nm-thick Si₃N₄ membrane using PCI at 1064 nm is shown, which can help pin down the correct model to estimate loss in the low loss region. Experimental setup schematics and photographs for **(b)** ellipsometry, **(c)** photothermal common-path interferometry, and **(d)** FTIR spectroscopy