Fabrication of hybrid perovskite solar cells based on low temperature solution process

Tzung-Wei Tsai¹, Yang-Yen Yu^{*1}, Chia-Fen Teng¹

¹ Department of Materials Engineering, Ming Chi University of Technology 84 Gunjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan

² Center for Thin Film Technologies and Applications, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan.

*Corresponding author's e-mail: <u>yyyu@mail.mcut.edu.tw</u>

ABSTRACT

Organic-inorganic perovskite solar cells have recently emerged at the forefront of photovoltaics research due to its dual electron and hole mobility. Organo-metal halide perovskites were composed of an ABX3 (e.g. CH₃NH₃PbI₃) structure in which A represents a cation, B a divalent metal cation (e.g. Pb²⁻) and X a halide (e.g. F, Cl, Br, I). We used two different materials such titanium dioxide (TiO₂) as the perovskite electron transport layer of the solar cell in this study. The titanium dioxide colloid was prepared by using a ball-milling process with the 50 micrometer zirconia balls in a SiC pot for 8~10h. Then, the titanium dioxide powders were prepared after annealing. The effects of annealing temperature on the properties of perovskite thin film were also investigated. The organic-inorganic perovskite solar cells with structure ITO/TiO2/Perovskite/Spiro-OMeTAD/Ag were fabricated. The best performance of the prepared solar cells had a photo conversion efficiency of 6.4%, J_{sc} of 12.11 mA/cm², V_{oc} of 0.96V, and fill factor of 0.56, respectively.

Keywords: Solar cell, Perovskite, Titanium dioxide, electron transport layer