Ag-Modified Bi₂Se₃ Nanoplatelets with Enhanced UV-Visible Photodetection

Chih-Chiang Wang¹, An-Ya Lo², Pao-Tai Lin³, Fuh-Sheng Shieu⁴, Han-Chang Shih⁴

¹Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu 640301, Taiwan.

²Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan

³Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA

⁴Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan

Abstract

Bi₂Se₃ has emerged as a promising candidate for photodetector applications due to its narrow band gap (~0.35 eV), conductive surface states, and insulating bulk properties. In this study, Bi₂Se₃ nanoplatelets were synthesized on Al₂O₃(100) substrates via thermal evaporation, followed by Ag deposition using the magnetron sputtering technique. The rhombohedral crystal structure of Bi₂Se₃ was confirmed by XRD, HRTEM, Raman spectroscopy, and XPS analyses. The presence and distribution of Ag on the Bi₂Se₃ surface were further verified by FESEM-EDS, XPS, and HRTEM. Optical measurements revealed that the UV-visible absorptance of Bi₂Se₃ nanoplatelets decreased when the Ag content exceeded 7.1 at.%. However, photocurrent responses under zero bias were significantly enhanced by the introduction of Ag. Specifically, the Bi₂Se₃ nanoplatelets containing 7.1 at.% Ag exhibited photocurrents approximately 4.3 and 4.6 times higher than those of pristine Bi₂Se₃ under UV and visible light, respectively. This enhancement is attributed to (i) the intrinsic narrow band gap of Bi₂Se₃, (ii) the formation of a Schottky field at the Ag/Bi₂Se₃ interface, (iii) the LSPR effect of Ag, and (iv) the improved surface conductivity at the heterointerface. These findings demonstrate that optimized Ag deposition can effectively enhance the photosensitivity of Bi₂Se₃ nanoplatelets, highlighting their potential for broadband photodetector applications.

[1] C.C. Wang, P.T. Lin, F.S. Shieu, H.C. Shih, Enhanced Photocurrent of the Ag Interfaced Topological Insulator Bi_2Se_3 under UV- and Visible-Light Radiations, Nanomaterials 2021, 11, 3353.

[2] F. Wang, L. Li, W. Huang, L. Li, B. Jin, H. Li, T. Zhai, Submillimeter 2D Bi₂Se₃ flakes toward high-performance infrared photodetection at optical communication wavelength. Adv. Funct. Mater. 2018, 28, 1802707.