Transport Properties of Superconductor-Ferromagnetic-Semiconductor Heterostructures

<u>Kaushini Wickramasinghe</u>^{1,2}, Joseph O. Yuan¹, Kasra Sardashti¹, Matthieu C. Dartiailh¹, William Mayer¹, Miao Jiang³, Le Duc Anh^{3,4}, Masaaki Tanaka^{3,5}, Shinobu Ohya^{3,4,5} Vladimir Manucharyan², and Javad Shabani¹

¹Center for Quantum Phenomena, New York University, 726 Broadway, New York, NY 10003, USA

²University of Maryland, College Park, MD 20742, USA ³Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

⁴Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

⁵Center for Spintronics Research Network (CSRN), Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

The rising interest in superconducting quantum computation has led to the exploration of topological superconductors. One of the schemes to achieve a topological superconductor is to use hybrid superconductor-semiconductor structures [1]. We are studying MBE grown InAs surface 2DEGs coupled with Al as a potential candidate. In addition to the good epitaxial contacts, spin texture of the induced current governs the nature of

superconductivity. Using dilute magnetic semiconductors $In_xMn_{1-x}As$, we can filter the triplet states over the singlets. The Al-InAs heterostructures have been characterized and studied using Josephson junctions. We also report on structural analysis of MBE epitaxy of Al-InMnAs-InAs and corresponding magnetic and electronic measurements.

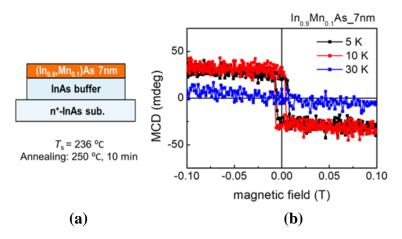


Fig 1. (a) Growth of InMNAs on InAs. (b) Shows pristine quality of the ferromagnetic ordering with Curie temperature below 30K.

[1] Jason Alicea. Rep. Prog. Phys. 75, 076501 (2012)

⁺ Author for correspondence: jshabani@nyu.edu