InP quantum dots for dislocation-tolerant, visible light emitters on Si

P. Dhingra,¹ Y. Sun,^{1,3} S. Fan,¹ R. D. Hool,² M. L. Lee¹⁺

¹ Dept. of Electrical and Computer Engineering, University of Illinois, Urbana, IL, USA
² Dept. of Material Science and Engineering, University of Illinois, Urbana, IL, USA
³ Dept. of Electrical Engineering, Yale University, New Haven, CT, USA

We present the first demonstration of InP quantum dots (QDs) on Si showing room-temperature, visible photoluminescence (PL) intensity nearly identical to samples grown on GaAs. The past few years have seen tremendous progress in the development of 1.3 μ m InAs quantum dot (QD) lasers on Si with low threshold current density and high reliability despite threading dislocation densities (TDD) of ~10⁷ cm⁻² [1]. The high luminescence efficiency of InAs QDs on Si can be attributed to lateral carrier confinement of the QDs and high QD density, ~3 orders of magnitude higher than the TDD. Epitaxial InP QDs embedded in (Al_xGa_{1-x})_{0.52}In_{0.48}P can also be grown on GaAs and have recently been used to demonstrate red and near-infrared lasers with low threshold current density [2]. Here, we show that the apparent dislocation-tolerance of InAs QDs on Si also extends to InP QDs on Si, making them an ideal candidate for low-cost visible and near-infrared lasers and light emitting diodes (LEDs).

We grew InP/AlGaInP QD PL structures on bulk GaAs and GaAs/Si virtual substrates using MBE. GaAs/Si virtual substrates were grown on commercially available GaP/Si (001) templates using a 3.6 μ m thick GaAs_xP_{1-x} step-graded buffer. Cross-sectional transmission electron microscope (XTEM) images of samples grown on both GaAs and GaAs/Si were nearly identical, showing coherently strained InP QDs capped by a smooth InGaP QW. Planar-view cathodoluminescence (CL) maps showed essentially no dislocations for the sample grown on GaAs, as expected. In contrast, a TDD of 3.3×10^7 cm⁻² was observed for the sample grown on GaAs/Si. Atomic force microscopy (AFM) showed a high QD density of 1.3×10^{11} cm⁻² on both substrates, which is several

orders of magnitude greater than the TDD in the active region. We performed room-temperature PL measurements to characterize the emission wavelength and intensity of InGaP QWs and InP QDs grown on both GaAs and GaAs/Si virtual substrates. The integrated intensity of the InGaP QW sample grown on GaAs/Si is ~9× lower than the QW on GaAs due to the high TDD. In contrast, the integrated intensity of InP QDs on Si is ~16× higher than the InGaP QW on Si and within 15% of InP QDs grown on GaAs, showing the high dislocation tolerance of InP QDs. In conclusion, we show that high density InP/AlGaInP QDs can be grown on Si with similar structural and optical properties as growth on bulk GaAs, paving a pathway towards low-cost, integrated light emitters with potential applications ranging from micro-LEDs to optogenetics.

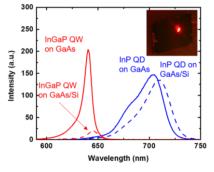


Figure 1: PL of InP QDs on GaAs/Si and GaAs showing similar integrated intensity and far greater dislocation tolerance compared to InGaP QWs. (inset: photo of PL from InP QDs/Si with green laser filtered out, sample size = $1.5 \text{ cm} \times 2 \text{ cm}$)

^[1] Jung, ACS Photonics, 5, 1094 (2018)

^[2] Lutti, Electron Lett., 5, 247 (2005)

⁺ Author for correspondence: mllee@illinois.edu

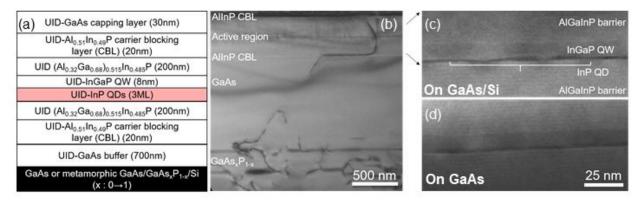


Figure 1: (a) InP QD structure for PL experiments, (b) Low- and (c) high-magnification XTEM image of InP QD active region on GaAs/Si. (d) XTEM of active region on GaAs showing nearly identical morphology. (b) taken with g = (004) and (c)-(d) taken with g = (002) two-beam conditions. Same scale bar for (c) and (d).

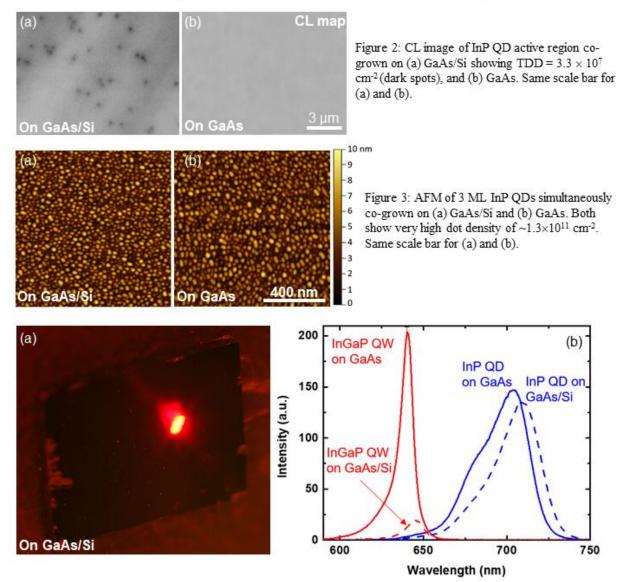


Figure 4: (a) Photo of PL from InP QDs on GaAs/Si at RT with green laser filtered out, sample size = $1.5 \text{ cm} \times 2 \text{ cm}$ (b) PL of InP QDs on GaAs/Si and GaAs showing similar integrated intensity and far greater dislocation tolerance compared to InGaP QWs.