Lazarevicite-type short-range ordering in ternary III-V nanowires

<u>M. Schnedler</u>^{1,*}, I. Lefebvre², T. Xu^{2,3}, V. Portz¹, G. Patriarche⁴, J.-P. Nys², S. R. Plissard^{2,5}, P. Caroff^{2,6}, M. Berthe², H. Eisele⁷, R. E. Dunin-Borkowski¹, Ph. Ebert¹, and B. Grandidier²

¹ Peter Grünberg Institut, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ² Dép. ISEN, Inst. d'Electronique, de Microélectronique et de Nanotechnologie (IEMN),

CNRS, UMR 8520, 41 Boulevard Vauban, 59046 Lille Cedex, France

³ Key Lab. of Advanced Display and System Application, Shanghai Univ., 149 Yanchang Road, Shanghai 200072, People's Republic of China

⁴ Lab. de Photonique et de Nanostructures (LPN), CNRS, Univ. Paris-Saclay, Route de Nozay, 91460 Marcoussis, France

⁵ Lab. d'Analyse et d'Architecture des Systèmes (LAAS), CNRS, Univ. de Toulouse, 7 Avenue du Colonel Roche, 31400 Toulouse, France

⁶ Inst. for Compound Semiconductors, Cardiff Univ., CF10 3AT, Cardiff, UK ⁷ Inst. f. Festkörperphysik, Techn. Univ. Berlin, Hardenbergstr. 36, 10623 Berlin, Germany

Stabilizing ordering instead of random- (a) ness in alloy semiconductor materials is a powerful means to change their physical properties. We used scanning tunneling (STM) and transmission electron microscopy to reveal the existence of an unrecognized ordering in ternary III-V materials. The lazarevicite short-range order (SRO), found in the shell of InAs_{1-x}Sb_x nanowires (NW) [cf. Fig. 1 ad], is driven by strong Sb-Sb repulsion along (110) atomic chains during Sb incorporation on unreconstructed {110} sidewalls. A preferred formation of lazarevicite SRO under group-III-rich growing conditions is found as shown by the pair correlation function c(x,y) in Fig. 1e and supported by our DFT calculations. Based on these observations, we present a growth model that offers the prospect to broaden the limited classes of ordered structures occurring in III-V semiconductor alloys. [1]

Figure 1: a) Schematic of a $InAs_{0.9}Sb_{0.1}/InAs$ NW b) Atomically resolved filled state STM image of the sidewall surface. Inset I) magnification of area labeled I, showing one Sb_{As} atom in the surface layer. Inset II) magnification of area labeled II, showing lazarevicite- and CuPt-type SRO. c) and d) illustrate the respective atomic models. e) Pair correlation function of the Sb_{As} distribution in (b).

^[1] M. Schnedler *et al.*, Phys. Rev. B **94**, 195306 (2016)

^{*} Author for correspondence: m.schnedler@fzjuelich.de