Carrier Collection and Transport at *Interface* of Lead-Free Halide Perovskites (FA,MA)SnI₃ Solar Cells

Bich Phuong Nguyen¹, Hye Ri Jung¹, Ka Yeon Ryu², KyungKon Kyungkon Kim² and William Jo^{1*}

¹Department of Physics and New and Renewable Energy Research Center (NREC), Ewha Womans University, Seoul 03760, Republic of Korea ²Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea *Corresponding author:

Charge extraction at carrier transport layers adjacent to perovskites is crucial for the optimization of perovskite solar cells. In particular, Sn-perovskites with no lead elements are known to struggle from charge extraction. Here, we report effects of organic ligands like FA and MA (FA = $HC(NH_2)_2^+$; MA = $CH_3NH_3^+$) on charge separation at the interface between electron transport layers and perovskites. TiO₂ mesoporous covering the tinperovskites show significant changes in electronic structure and built-in potentials according to the ratio of FA to MA. Through a local probe with potential and current mapping, charge transport has been intensively examined. The best cell in this study is obtained as 5.37% at FA : MA = 3 : 1 with only iodine at the halide sites. Even though the value itself is not comparable with lead halides but it could pave a new direction to improve lead-free perovskite solar cells.

⁺ Author for correspondence: William Jo (wmjo@ewha.ac.kr).

Figure 1. (a)–(c) Topography of the FA_xMA_{1-x}SnI₃/mesoporous TiO₂/blocking TiO₂/FTO substrate. (d)–(f) Surface potential of FA_xMA_{1-x}SnI₃ corresponding to the topography measured in the dark. (g)–(i) Surface potential of FA_xMA_{1-x}SnI₃ corresponding to the topography measured under illumination. (j)–(I) Surface potential profiles of FA_xMA_{1-x}SnI₃ corresponding to the topography measured in dark and under illumination.

Suplementary Pages (Optional)

