Observation, Characterization, and Mitigation of the Internal *pn* Junction in Pyrite FeS₂, a Potential Low-cost Solar Absorber

<u>B. Voigt</u>,¹⁺ W. Moore,¹ J. Walter,¹ B. Das,¹ M. Maiti,¹ M. Manno,¹ E. S. Aydil,^{1,2} C. Leighton¹

¹ Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55455, USA

² Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA

Pyrite FeS₂ is widely acknowledged as an ideal semiconductor for thin film solar cells due to its earth-abundance, low toxicity, low cost, suitable band gap (0.95 eV) and minority carrier diffusion length, and high visible light absorptivity. Power conversion efficiencies of FeS₂ heterojunction solar cells, however, have never exceeded 3% due to low opencircuit voltages ($V_{OC} < 0.3$ V). One hypothesis emerging from recent temperature (T)dependent transport measurements of high quality single crystals is that this low V_{OC} is due to a conductive pyrite surface with a carrier type (*p*-type) inverted from bulk (*n*-type) [1,2]. This could create a leaky (*i.e.*, low- V_{OC}) internal *p*-*n* junction, thus limiting heterojunction solar cell efficiencies. These studies established conduction through a 1-3 nm-thick, p-type surface upon freeze-out of *n*-type bulk carriers [1,2]. Two parallel resistors representing surface and bulk conduction can describe the T-dependence of resistivity across a wide T range (50-500 K) [1] and the non-linear Hall effect observed near the crossover between bulk- and surface-dominated conduction upon cooling below 300 K [2]. Notably, what has neither been observed nor characterized, however, is the internal p-n junction implied by this *p*-type surface and *n*-type bulk. Here, we directly observe this internal junction for the first time. In-plane sheet resistance (R_S) measurements of polished crystals doped heavily *n*type via sulfur vacancies are shown to display an effect where metallic-like transport abruptly transitions to rapidly increasing R_S below ~175 K, eventually transitioning to surface conduction at lower T (<100 K). We show that this very unusual T-dependence can be well described by incorporating an exponentially-T-dependent junction resistance into the parallel resistor model. Junction barrier heights extracted from the model are typically 0.15 - 0.30 eV, in good agreement with typical V_{OC} values in past heterojunction solar cells, suggesting that this internal junction may, in fact, be limiting conversion efficiencies. Interestingly, while junction influence in $R_S(T)$ is independent of contact materials such as In, Ag, Fe, Co, and Ni, CoS_2 contacts mitigate this junction, allowing the first characterization of bulk properties to low T. Access to bulk properties at low T unveils rich phenomena, such as the onset of a smaller donor activation energy below 175 K, non-linear Hall effect near 100 K, and an unusual resistivity anomaly at $T \leq 10$ K, showcasing CoS₂ contacts as a way to both mitigate this junction and advance understanding of electronic transport in FeS₂. This work was supported by the customers of Xcel Energy through a grant from the Renewables Development Fund.

^[1] M. Limpinsel et al., Energy Environ. Sci. 7, 1974 (2014).

^[2] J. Walter, et al., Phys. Rev. Mater. 1, 065403 (2017).

⁺ Author for correspondence: voigt132@umn.edu

Supplementary Pages

Figure 1. Expected resistor network in horizontal transport measurements of a pyrite FeS₂ single crystal (~100 μ m thick) with an *n*-type interior (shown in blue) and a degenerately-doped, *p*-type surface (shown in red). The depletion region on the *n*-type side of the internal junction, and the resistance associated with it (R_I), is shown in light blue.

Figure 2. (a,c,d) The temperature (*T*) dependence of surface (R_{Surf}), junction (R_J), and bulk resistance (R_B) contributions to the total sheet resistance (R_S) of FeS₂ crystals grown under light (a), moderate (c), and heavy (e) sulfur vacancy (V_S) doping. The *T*-dependence of R_{Surf} (red data) is independent of V_S doping. $R_B(T)$ (blue data) is quantitatively described in each case using the Hall effect and the Drude model, by which the *T*-dependences of electron density and mobility are described by simple activated and power law behavior, respectively (data not shown). $R_J(T)$ (light blue data) is described assuming a Schottky junction, with $R_J(T) = R_{0,J}e^{q\varphi_B/k_BT}$, where $R_{0,J}$ is a pre-exponential factor, *q* is the electric charge, k_B is Boltzmann's constant, and φ_B is the Schottky barrier height (in eV). (b,d,f) Comparison of the *T*-dependence of measured sheet resistance (R_S , colored data) and calculated sheet resistance (black lines). In each case, the measured R_S is well described by the parallel resistor network shown in Figure 1, adjusted from previous work by including R_J . Interestingly, R_J is only made manifest in crystals doped with larger V_S concentrations, where R_B does not freeze out upon cooling to intermediate *T* (~200 K) due to donor band broadening and an evolution towards an insulator-metal transition.

Figure 3. (a) $R_S(T)$ of an FeS₂ crystal heavily doped with V_S, contacted using In soldered (blue data) *vs*. CoS₂ (green data) contacts. CoS₂ contacts mitigate the strong *T*-dependent R_J , allowing access to bulk FeS₂ transport at lower *T*. Shown in the inset is bulk FeS₂ transport at low *T*, accessed using CoS₂ contacts, which highlights the resistivity anomaly near and below 10 K (vertical dashed line). CoS₂ is a ferromagnetic metal, also crystallizing in the pyrite structure, and Co is a known shallow donor in FeS₂. The current hypothesis is that, through the mild heat treatment (350 °C, 8 hrs, in S vapor) we use to sulfidize sputtered Co contacts into CoS₂, Co in-diffuses, strongly doping the near-surface region of the FeS₂ crystal and shorting the junction resistance. (b) Arrhenius plot of electron density (*n*) *vs*. 1/T, where the slope is proportional to the activation energy (ΔE) of the donor state contributing to extrinsic conduction. A smaller ΔE (6 meV) is observed below ~175 K; this is not accessible without CoS₂ contacts. Inset: the non-linear magnetic field dependence of the Hall resistance (R_{xy}) at 83 K.