Full-Field Structural Microscopy Reveals Dynamic Film— Substrate Interactions in VO₂ Neuromorphic Devices

Elliot Kisiel^{1,2}, Pavel Salev³, Alexandre Pofelski⁴, Spencer Reisbick⁴, Chuhang Liu⁴, Andreas Glatz^{5,6}, Ishwor Poudyal^{2,5}, David Alspaugh¹, Erbin Qiu¹, Wei He¹, Rourav Basak¹, Junjie Li¹, Zhan Zhang², Arndt Last⁷, Marcelo Rozenberg¹, Oleg Shpyrko¹, Yimei Zhu⁴, Ivan Schuller¹, Zahir Islam², <u>Alex Frano</u>¹

¹Physics Department, University of California, San Diego, La Jolla, CA 92093, USA.
²X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
³Department of Physics and Astronomy, University of Denver, Denver, CO 80210, USA.
⁴Brookhaven National Laboratory, Upton, NY 11973, USA.
⁵Material Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
⁶Department of Physics, Northern Illinois University, DeKalb, IL, 60115, USA.
⁷Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen D-76344, Germany

Understanding how structural transitions govern neuromorphic functionality in quantum materials requires characterization tools that can probe local transformations in operando and across multiple length scales. We combine dark-field X-ray microscopy (DFXM) with complementary X-ray and electron microscopies to reveal the structural evolution of voltage-driven filaments in VO₂ memristive devices and their unexpected coupling to the underlying

substrate. DFXM provides highresolution, full-field, structureselective imaging, enabling us to visualize rutile filament formation without destructive specimen preparation or slow rastering. We find [1] that rutile channels contain residual monoclinic clusters, revealing internal nonuniformity. and that nucleation beneath electrodes precedes the growth of conductive pathways. Additionally, repeated voltage cycling

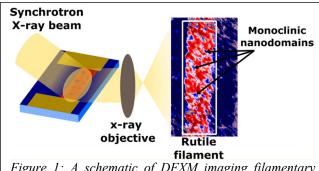


Figure 1: A schematic of DFXM imaging filamentary domains in a VO₂ neuromorphic device.

induces a medium-term (<30 min) memory effect: specific sites in the device gap switch at lower voltages even after a brief thermal reset. Strikingly, we show [2] that these electronic/structural transformations in the VO₂ film are not mechanically isolated: filament formation generates strong, highly asymmetric strain fields that imprint deep into the Al₂O₃ substrate. This strain feeds back into the film, guiding subsequent filament expansion and redefining local switching dynamics. The observed film–substrate feedback mechanism expands the conventional view of epitaxial strain from a static constraint to an active, reconfigurable parameter during device operation. These results position DFXM as a powerful platform for operando studies of correlated oxides and point toward substrate engineering as an emerging route to control and functionalize neuromorphic architectures.

^[1] E. Kisiel, et al. ACS Nano 19, 16, 15385–15394 (2025)

^[2] E. Kisiel, et al., in review

Supplementary information

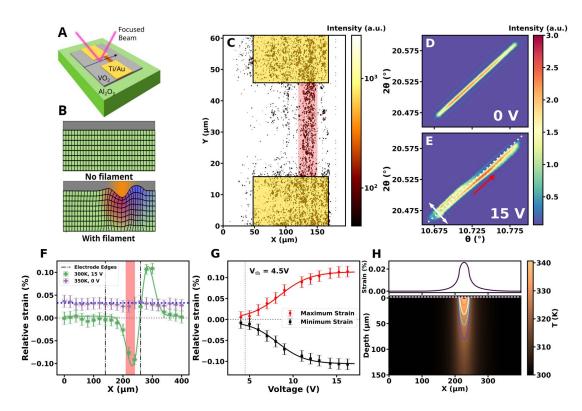


Fig. 2. Al₂O₃ substrate strain imprinted by the filament formation in the VO₂ film switching device. A, Schematic of the VO₂/Al₂O₃ device with microdiffraction scan direction (black arrow). B, Illustration of asymmetric substrate strain generated by the VO₂ filament. C, DFXM image of a voltage-induced rutile filament in VO₂; electrodes are gold outlines, filament in red. **D**, **E**, (012) Al₂O₃ substrate Bragg peak at 0 V (**D**) and 15 V (**E**) applied to the VO₂ film device. The peak at 15 V shows splitting and center of mass shift. The white line in the 15 V panel indicates the location of the 0 V peak. The white arrow indicates a splitting in the orientation while the red arrow indicates a shift in the center of mass. F, Measured strain profile in the Al₂O₃ substrate during the voltage-induced filament formation in the VO₂ film at 300 K (green line and symbols) and under equilibrium conditions at 350 K (i.e., zero voltage) above the VO₂ film phase transition (purple line and symbols). The filament location is highlighted in red and the vertical dashed lines indicate the device electrode location. Unlike the spatially uniform phase transition in VO₂ at 350 K, voltage-induced localized phase transition in the film produces large asymmetric strain distribution in the underlying Al₂O₃ substrate. G, Voltage dependence of the asymmetric strain (peak and valley in red and black, respectively) in the Al₂O₃ substrate. The substrate strain development correlates with the threshold switching voltage, $V_{th} = 4.5 \text{ V}$, of the VO_2 film device. H, Thermal simulations showing the substrate strain development induced by the VO₂ filament acting as a heat source. Contours in the bottom panel are in steps of 5 K from 320 K to 340 K. The simulated strain profile (top panel) has a drastically different magnitude and shape compared to the experimental observations in F, which indicates that the experimental results cannot be attributed to simple heating effects.