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In an effectively-screened environment, transition metal dichalcogenides (TMDs) rearrange their charge
carriers to screen the added charges, and reduce the electronic band gap. Consequently, when interfaced
with dissimilar materials, a sheet of TMD would change its band gap adapted to its local external screening
environment. Similarly, a well-screened environment stabilizes photo-holes or core-holes created in the
photoemission process and, in turn, boosts the kinetic energy of photoelectrons resulting in the apparent
smaller binding energy. Complication arises when determining the electronic band alignment of TMDs
using photoelectron spectroscopy since the screening influences the material property of interest as well as
its assessment approach concurrently. Using a sample that contains areas of suspended and gold-supported
one-layer WS,, we show how the electronic states of WS, under the contrasting effective or ineffective
external screening environment align at the built-in junction. The photoelectron spectra point to the
breakdown of rigid shifts between the valence states and core-levels with the core-levels shifting more than
twice as much as the valence states. Additionally, effectively-screened WS, displays a valence state with a
substantially larger photoemission linewidth than ineffectively-screened suspended WS,. Altogether, our
result provides key insights into how the local variation of the external screening environment creates
essentially a heterojunction within a layer of WS,, and whether commonly accepted photoelectron
spectroscopy practices hold when examining the electronic structures of one-layer TMDs.
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