Engineering Telecom-Wavelength Quantum Dots via Epitaxial Growth on InP and GaAs for Single-Photon Applications

Jesus Marquez¹, C. Heinrich², M. Frost², T. J. Rotter², S. Addamane³ and G. Balakrishnan²

¹Department of Physics, New Mexico State University, Las Cruces, NM, USA; ²Center for High Technology Materials, University of New Mexico, Albuquerque, NM, USA; ³Center for Integrated Nanotechnology, Sandia National Laboratory, Albuquerque, NM, USA

This work explores two promising approaches for fabricating single-photon emitters operating at telecom wavelengths $(1.3-1.55~\mu m)$, using epitaxially grown quantum dots (QDs). The first approach involves the growth of InAs nanostructures on InP substrates, producing a mix of quantum dots and dashes. On standard InP (100) substrates, growth proceeds via a modified Stranski–Krastanov (SK) mechanism, where a thick, planar wetting layer forms prior to 3D island nucleation. These elongated dashes, preferentially aligned along the (1-10) direction, exhibit limited three-dimensional confinement, behaving more like quantum wells. In contrast, growth on (311)B-oriented InP yields discrete QDs with strong single-dot emission characteristics.[1]

The second approach leverages the GaSb/GaAs material system to realize both coherently strained SK-mode QDs and strain-relaxed islands, the latter mediated by interfacial misfit dislocation arrays. Despite its promise, this system faces challenges due to likely type-II band alignment and the complexity introduced by GaSb/GaAs interdiffusion during capping.

Growth experiments are conducted using a solid-source VG V80 MBE reactor. InAs QDs are deposited on n-doped InP (001) and (311B) substrates with In_{0.53}Ga_{0.47}As buffer layers, while GaSb QDs are grown on semi-insulating GaAs (001) with GaAs buffer layers. Substrate desorption, growth temperatures, and layer thicknesses are carefully optimized. Ongoing work includes detailed PL, μ-PL, and TEM characterization of these nanostructures to assess their optical and structural properties for single-photon emission applications.

This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE's National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. DOE or the United States Government.

[1] N. A. Jahan et al., Temperature dependent carrier dynamics in telecommunication band InAs quantum dots and dashes grown on InP substrates, J. Appl. Phys. **113**, 033506 (2013).