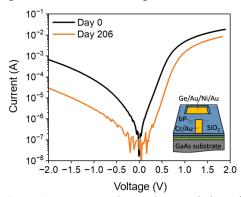
## Surface Passivation in Black Phosphorous/GaAs Ultra-Thin Heterojunctions

## <u>Peter J. Ela<sup>1,3</sup>+</u> Emma J. Renteria, Sadhvikas J. Addamane, and Francesca Cavallo<sup>1,3</sup>


<sup>1</sup>Center for High Technology Materials, University of New Mexico, Albuquerque, NM 87106, USA

<sup>2</sup>Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87123, USA

<sup>3</sup>Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA

We have previously demonstrated a black phosphorous (bP)/GaAs ultra-thin heterojunction diode with potential application as a radio-frequency (RF)-hard photodetector [1]. In this device, an inherently p-type bP flake obtained by mechanical exfoliation from a naturally occurring bulk crystal is interfaced with a heavily doped n-type GaAs semiconductor nanomembrane (NM). The GaAs NM serves as the cathode of the diode and acts as a shield against electromagnetic interference for the device [2]. The bP, i.e., the anode of the diode, allows for potentially tuning the spectral range of the detector between 0.6 and 4  $\mu$ m, depending on its thickness [3]. The measured current-voltage characteristics of the bP/GaAs p-n junctions showed a dark current of  $\sim 6.5 \times 10^{-4}$  A at an applied bias of -2 V upon device fabrication, a value that would severely limit the signal-to-noise ratio and the sensitivity of the photodiode. Here we present our recent efforts directed to evaluating self-passivation of bP as a strategy to minimize the dark current in our fabricated devices. Preliminary results for a diode exposed to air through a porous dielectric for 206 days showed a decrease in the dark current, triggering further investigation of the surface structure-leakage current relationship in the bP/GaAs

devices. Specifically, we conducted a systematic study to quantify charge transport through the surface and the perimeter of the diodes via characterization of variable area devices. For this purpose, we established processes to exfoliate largearea bP flakes of uniform thickness, followed by patterning of the flakes by photolithography and inductively coupled plasma etching. The surface resistance extracted from the current-voltage characteristics of the variable-area devices was correlated with the physical and chemical structure of surfaces, sidewalls, and interfaces, as probed by electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy.



**Figure 1.** Current-voltage characteristics of a bP/GaAs diode encapsulated with SiO<sub>2</sub> upon fabrication and after 206 days from fabrication.

- [1] E. J. Renteria et al., Proc. SPIE PC13119, Spintronics XVII, PC131191R (2024).
- [2] E. J. Renteria et al. Adv. Mater. Technol. 9, 19 (2024).
- [3] X. Chen et al., Nat. Commun. 8, 1 (2017).