Enhanced-Entropy Phases in Geometrically Frustrated Pyrochlore Magnets

P. Timsina, A. Chappa, D. Alyones, I. Vasiliev, and L. Miao^{1,+}

Department of Physics, New Mexico State University, Las Cruces, NM, USA
Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, USA

Frustrated magnets host unconventional states stabilized by degeneracy and entropy, from spin ice [1] to quantum spin liquids [2] and pyrochlore oxides [3]. Pyrochlore iridates $R_2Ir_2O_7$ (R = Dy, Ho) provide a platform with tunable d-f exchange interactions and multiple frustrated phases [3,4]. In these systems, competing interactions suppress long-range order, yielding emergent quasiparticles such as magnetic monopoles [1].

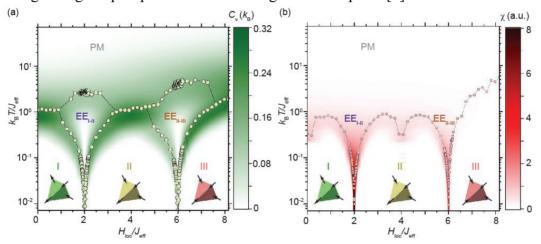


Figure 1: (a) Specific heat (C_v) and (b) susceptibility (χ) as a map of k_BT/J_{eff} and H_{loc}/J_{eff} , showing two enhanced-entropy (EE) phases (EE_{I-II} & EE_{II-III}) between spin-ice (I), fragmented (II), and AIAO phases (III).

Using Monte Carlo simulations, we map the thermodynamic phase diagram, identifying the 2-in–2-out (2I2O) spin ice, fragmented 3-in–1-out/1-in–3-out (3I1O/1I3O) [4], and all-in–all-out (AIAO) ground states [5]. In this talk, we will investigate the two finite-temperature enhanced-entropy (EE) phases near phase boundaries, characterized by high entropy, strong susceptibility, and mixed spin configurations. These phases are found to be stabilized by entropy-driven free-energy minimization, with distinct behavior of specific heat capacity decoupling from susceptibility serving as key signatures [5] (Fig. 1). These EE states define a new class of entropy-stabilized magnetic phases, underscoring the role of frustration in finite-temperature correlated states and offering pathways for entropy-based material design.

^[1] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, & B. S. Shastry, Nature 399, 333 (1999).

^[2] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T. Senthil, Science **367**, 263–273 (2020).

^[3] J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010).

^[4] E. Lefrancois, V. Cathelin, E. Lhotel, J. Robert, P. Lejay, C.V. Colin, B. Canals, F. Damay, J. Ollivier, B. Fak, L. C. Chapon, R. Ballou, and V. Simonet, Nat. Commun. 8, 209 (2017).

^[5] P. Timsina, A. Chappa, D. Alyones, I. Vasiliev, and L. Miao, arXiv:2505.13352 (submitted: PRB, 2025).

⁺ Author for correspondence: lmiao@nmsu.edu

Suplementary information:

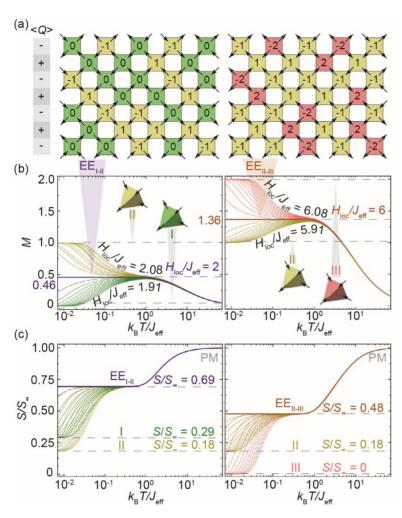


Figure 2: Spin configurations and entropy of EE phases. (a) Schematics of EE_{I-II} and EE_{I-II} phases with mixed tetrahedra fractions. (b) Magnetic order parameter (M) and (c) Normalized entropy (S/S_{∞}) versus $k_{\rm B}T/J_{\rm eff}$, confirming disordered and finite temperature stability.