Substrate-strain-controlled molecular beam epitaxial growth and scanning tunneling microscopy of antiperovskite Mn₃GaN

A. Abbas¹, J. C. M. Hernandez², A. Shrestha¹, D. Russell³, F.-Y. Yang³, K. Sun⁴, and A. R. Smith¹

¹Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 USA

²Popular Autonoma del Estado de Puebla, Puebla 72410, Mexico

³Department of Physics, The Ohio State University, Columbus, Ohio 43210

⁴Department of Mat Sci & Engin., University of Michigan, Ann Arbor, MI 48109

This study investigates the epitaxial growth, structural characterization, and theoretical modeling of thin-film antiperovskite Mn₃GaN, a chiral antiferromagnetic material with a kagome spin lattice grown on MgO (001) substrates via nitrogen plasma-assisted molecular beam epitaxy (MBE). The resulting films exhibit a homogeneous composition with

atomically smooth surfaces and sharp interfaces, characterized by minimal *in-plane* tensile strain and *out-of-plane* compressive strain. First-principles calculations are employed to determine the energetically favorable configurations of both the MGN surface and the MGN /MgO heterostructure, and STM images reveal an atomically smooth surface with atomicheight steps [1].

The results show that the MnGa layer along the (001) direction is energetically favorable [1]. This layer is ferromagnetic *in-plane*, whereas in the (111) plane, all Mn₃Ga layers have chiral antiferromagnetic spin structure, making these very interesting from the spin perspective. In

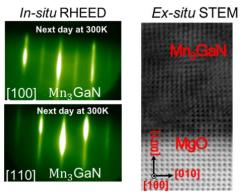


Fig. 1 (a) In-situ RHEED images of Mn3GaN (001) surface after MBE growth. Half-order streak is related to the antiperovskite structure; (b) bright-field TEM image of Mn3GaN/MgO interface.

principle, this spin structure is accessible via spin-polarized STM which is currently our aim. Furthermore, measurements at low temperatures can be accomplished using our new variable-temperature STM system which enables better tip stability and lower noise. Since the Neel temperature of Mn₃GaN is 298 K, by investigating this system using spin-polarized STM tips at cryogenic temperatures, it is possible to resolve the temperature-dependent spin structure, and even the Neel transition.

This research has been supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-06ER46317 (MBE, RHEED, STM) and under award No. DE-SC0001304 (XRD, SQUID).

^[1] A. Abbas, J. C. M. Hernandez, A. Shrestha, D. Russell, T. Erickson, F.-Y. Yang, K. Sun, and A. R. Smith, *Surfaces and Interfaces*, **64**, 10620, 2025.

^[2] G. Gurung, D. F. Shao, T. R. Paudel, and E. Y. Tsymbal, *Physical Review Materials*, 3(4), 044409, 2019.